БАКТЕРИАЛЬНЫЕ БИОПЛЕНКИ И ИНФЕКЦИИ


https://doi.org/10.22625/2072-6732-2010-2-3-4-15

Полный текст:


Аннотация

В настоящее время общепризнано, что основной формой существования бактерий в естественных условиях являются связанные с поверхностью сообщества, получившие название биопленок, а не отдельные планктонные клетки. Биопленки обнаруживают более чем в 80% хронических инфекционных и воспалительных заболеваний, что позволило выдвинуть концепцию хронических болезней как болезней биопленок. Для обмена информацией в пределах биопленки между отдельными клетками одного и того же или разных видов бактерии используют секретируемые феромоны, например сигнальные молекулы системы quorum sensing. Координация различных видов активности бактериальных клеток в составе биопленок обеспечивает им значительные преимущества. В составе биопленок бактерии оказываются защищенными от действия факторов резистентности хозяина и антибактериальных препаратов. Одним из возможных механизмов повышения устойчивости бактерий к внешним воздействиям и антибактериальным препаратам является значительное увеличение в составе биопленок доли клеток-персистеров.


Об авторах

В. В. Гостев
Научно-исследовательский институт детских инфекций ФМБА России, Санкт-Петербург
Россия

младший научный сотрудник отдела молекулярной микробиологии и эпидемиологии ФГУ «Научно-исследовательского института детских инфекций Федерального медико-биологического агентства России» тел.: 8-905-220-97-41



С. В. Сидоренко
Научно-исследовательский институт детских инфекций ФМБА России, Санкт-Петербург
Россия

доктор медицинских наук, профессор, руководитель отдела молекулярной микробиологии и эпидемиологии ФГУ «Научно-исследовательского института детских инфекций Федерального медико-биологического агентства России», тел.: 8(963)316-08-08



Список литературы

1. Balaban N.Q. Bacterial Persistence as a Phenotypic Switch / N.Q. Balaban, [et. al.] // Science. – 2004. – ol. 305, № 5690. – P. 1622–1625.

2. Benkert B. Nitrate-responsive NarX-NarL represses arginine-mediated induction of the Pseudomonas aeruginosa arginine fermentation arcDABC operon / B. Benkert, [et. al.] // Microbiology. – 2008. – №154. – P. 3053–3060.

3. Biofilms, Infection, and Antimicrobial Therapy / ed. J.L. Pace, [et. al.]. – Boca Raton: Taylor & Francis Group, 2006. – 495 p.

4. Bjarnsholt T. Interference of Pseudomonas aeruginosa signalling and biofilm formation for infection control /T. Bjarnsholt, [et al.] // Expert Rev. Mol. Med. – 2010. – №12. – P. 121–126.

5. Bjarnsholt T. Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent / T. Bjarnsholt, [et. al.] // Microbiology. – 2005. – №151. – P. 373–383.

6. Blango, M.G. Persistence of uropathogenic Escherichia coli in the face of multiple antibiotics / M.G. Blango, M.A. Mulvey // Antimicrob. Agents Chemother. – 2010. – Vol. 54, №5. – P. 855–1863.

7. Cassat J. Transcriptional profiling of a Staphylococcus aureus clinical isolate and its isogenic agr and sarA mutants reveals global differences in comparison to the laboratory strain RN6390 / J. Cassat, [et. al.] // Microbiology. – 2006. – №152. – P. 3075–3090.

8. Chen L.C. Ligand-receptor recognition for activation of quorum sensing in Staphylococcus aureus / L.C. Chen, [et. al.] // J. Microbiol. –2009. – Vol. 47, №5. – P. 572–581.

9. Cho S.H. Detection of the icaADBC gene cluster and biofilm formation in Staphylococcus epidermidis isolates from catheter-related urinary tract infections / S.H. Cho, [et. al.] // Int. J. Antim. Agen. – 2002. – Vol. 19, №6. – P. 570–575.

10. Christensen L.D. Impact of Pseudomonas aeruginosa quorum sensing on biofilm persistence in an in vivo intraperitoneal foreign-body infection model / L.D. Christensen, [et. al.] // Microbiology. – 2007. – №153. – P. 2312–2320.

11. Cirioni O. RNAIII-Inhibiting Peptide Significantly Reduces Bacterial Load and Enhances the Effect of Antibiotics in the Treatment of Central Venous Catheter–Associated Staphylococcus aureus Infections / O. Cirioni, [et. al.] // J. of Inf. Dis. – 2006. – №193. – P. 180–186.

12. Collery M.M. Molecular typing of nasal carriage isolates of Staphylococcus aureus from an Irish university student population based on toxin gene PCR, agr locus types and multiple locus, variable number tandem repeat analysis / Mark M. Collery, [et. al.] // J. of Med. Microb. – 2008. – №57. – P. 348–358.

13. Costerton J. W. The Biofilm Primer, Vol. 1 /J.W. Costerton. – Berlin: Springer, 2007. – 200 p.

14. Costerton, J. W. Bacterial biofilms in nature and disease / J. W. Costerton [et. al.] // Annu. Rev. Microbiol. – 1987. – №41. – P. 435–464.

15. Costi D. S. Quorum Sensing: Bacteria Talk Sense /D.S. Costi // Clin. Inf. Dis. – 2008. – №47. – P. 1070–1076.

16. Darouiche R.O. Device-associated infections: a macroproblem that starts with microadherence /R.O. Darouiche // Clin. Infect. Dis.– 2001. – Vol. 33, №9. – Р. 1567–1572.

17. Das. T. Role of Extracellular DNA in Initial Bacterial Adhesion and Surface Aggregation T. Das, [et al.] // Appl. Environ. Microbiol. – 2010. – P. 806–811.

18. Davey M.E. Microbial biofilms: from ecology to molecular genetics / M.E. Davey, G.A. O’Toole // Microbiol. Mol. Biol. Rev. – 2000. – №64. – P. 847–867.

19. Diemond-Hernandez B. Production of icaADBCencoded polysaccharide intercellular adhesin and therapeutic failure in pediatric patients with staphylococcal device-related infections / B. Diemond-Hernandez, [et al.] // BMC Infect. Dis. – 2010. – №10. – P. 68–74.

20. Donlan R.M. Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms / R.M. Donlan, J.W. Costerton //CLIN. MIC. REV. – 2002. – Vol. 15, № 2. – P. 167–193.

21. Garcia-Castillo M. Differences in biofilm development and antibiotic susceptibility among clinical Ureaplasma urealyticum and Ureaplasma parvum isolates / M. Garcia- Castillo, [et. al.] // J. Antimicrob. Chemother. – 2008. – Vol. 62, №5. – P. 1027–1030.

22. Garvis S. Staphylococcus aureus svrA: a gene required for virulence and expression of the agr locus / S. Garvis, [et. al.] // Microbiology. – 2002. – №148. – P. 3235–3243.

23. Gotz F. Staphylococcus and biofilms / F. Gotz // Mol. Microb. –2002. – Vol. 43, №6. – P. 1367–1378.

24. Hall-Stoodley L. Evolving concepts in biofilm infections / L. Hall-Stoodley, P. Stoodley // Cell Microbiol. – 2009. – Vol. 11, №7. – P. 1034–1043.

25. Harrison J.J. Persister cells mediate tolerance to metal oxyanions in Escherichia coli / Joe J. Harrison, [et. al.] // Microbiology. – 2005. – №151. – P. 3181–3195.

26. Hassett D. J. Pseudomonas aeruginosa hypoxic or anaerobic biofilm infections within cystic fibrosis airways/ D.J. Hassett, [et. al.] // Trends. Microbiol. – 2009. – Vol. 17, №3. – P. 130–138.

27. Hǿibya N. Antibiotic resistance of bacterial biofilms / Niels Hǿibya, [et. al.] // Int. J. of Antimic. Agents. – 2010. – №35. – P. 322–332.

28. Holmes, C. J. Catheter-associated biofilm /C.J. Holmes // Contrib. Nephrol. – 1990. – № 85. – P.49–56.

29. Hunter, R.C. Mapping the speciation of iron in Pseudomonas aeruginosa biofilms using scanning ransmission X-ray microscopy / R.C. Hunter, [et. al.] // Environ. Sci. Technol. – 2008. – Vol.42, №23. – P. 8766–8772.

30. Jian L. Bacterial Resistance to Antimicrobials: Mechanisms, Genetics, Medical Practice and Public Healt / L. Jian, [et. al.] // Biot. Let. – 2002. – Vol.24, №10. – P. 801–805.

31. Karatan, E. Signals, regulatory networks, and materials that build and break bacterial biofilms / E. Karatan, P. Watnick // Microbiol. Mol. Biol. Rev. – 2009. – Vol. 73, №2. – P.310–347.

32. Keren I. Persister cells and tolerance to antimicrobials / I. Keren, [et. al.] // FEMS Microb. Let. – 2004. – №230. – P. 13–18. of Multidrug Tolerance in Escherichia coli / I. Keren, [et. al.] // J. Of Bact. – 2004. – Vol. 186, №24. – P. 8172–8180.

33. Kirov S.M. Biofilm differentiation and dispersal in mucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis / S. M. Kirov, [et. al.] // Microbiology. – 2007. – №153. – P. 3264–3274.

34. Kreft J-U. Biofilms promote altruism / J-U. Kreft // Microbiology. – 200. – №150. – P.2751–2760.

35. Lewis K. Persister cell / K. Lewis // Annu. Rev. Microbiol. – 2010. – №64. – P. 357–372.

36. Lewis K. Persister cells, dormancy and infectious disease / K. Lewis // Nat. Rev. Microbiol. – 2007. – №5. – P. 48–56.

37. Lewis K. Riddle of Biofilm Resistance / K. Lewis //J. Antimicrob. Chemother. – 2001. – Vol. 45, № 4. – P. 999–1007.

38. Li M. Genetic polymorphism of the accessory gene regulator (agr) locus in Staphylococcus epidermidis and its association with pathogenicity / M. Li, [et. al.] J. of Med. Microb. – 2004. – №53. – P. 545–549.

39. Luja´n A. M. Quorum-sensing-deficient (lasR) mutants emerge at high frequency from a Pseudomonas aeruginosa mutS strain / A. M. Luja´n, [et. al.] // Microbiology. – 2007. – №153. – P. 225–237.

40. Manos J. Transcriptome analyses and biofilm-forming characteristics of a clonal Pseudomonas aeruginosa from the cystic fibrosis lung / J. Manos, [et. al.] // J. of Med. Microb.- 2008. – №57. – P.1454–1465.

41. McAuliffe L. Biofilm formation by mycoplasma species and its role in environmental persistence and survival / L. McAuliffe, [et. al.] // Microbiology. -2006. – №152. – P. 913–922.

42. McDougald, Signal-mediated cross-talk regulates stress adaptation in Vibrio species / D. McDougald, [et. al.] // Microbiology. – 2003. – Vol. 149, № 7. – P.1923–1933.

43. Mehta P. Information processing and signal integration in bacterial quorum sensing / P. Mehta, [et. al.] // Mol. Syst. Biol. – 2009 – №5. – P. 325.

44. Mo`ker N. Pseudomonas aeruginosa Increases Formation of Multidrug-Tolerant Persister Cells in Response to Quorum- Sensing Signaling Molecules / N. Mo`ker, [et. al.] // J. of Bact. – 2010. – Vol. 192, № 7. – P. 1946–1955.

45. Mohamed J.A. Biofilm formation by enterococci /J.A. Mohamed, D.B. Huang // J. of Med. Microb. – 2007. – №56. – P.1581–1588.

46. Moons P. Bacterial interactions in biofilms / P. Moons, [et. al.] // Crit. Rev. Microbiol. – 2009. – Vol. 35, №3. – P. 157–168.

47. Nickel, J.C. Catheter-associated bacteriuria. An experimental study / J.C. Nickel, [et. al.] // Urology – 1985. – № 26(4). – P. 369–375.

48. Oglesby L. L. Membrane topology and roles of Pseudomonas aeruginosa Alg8 and Alg44 in alginate polymerization / Lashanda L. Oglesby, [et. al.] // Microbiology. – 2008. – №154. – P. 1605–1615.

49. Pascual A. Pathogenesis of catheter-related infections: lessons for new designs/ A. Pascual // Clin. Microbiol.Infect. – 2002. – Vol. 8, № 5. – P. 256–264.

50. Petrelli D. Analysis of meticillin-susceptible and meticillinresistant biofilm-forming Staphylococcus aureus from catheter infections isolated in a large Italian hospital / D. Petrelli, [et. al.] // J. of Med. Microb. – 2008. – №57. – P. 364–372.

51. Qin Z. Formation and properties of in vitro biofilms of icanegative Staphylococcus epidermidis clinical isolates / Z. Qin, [et. al.] // J. of Med. Microb. – 2007. – №56. – P. 83–93.

52. Qiu D. ClpXP proteases positively regulate alginate overexpression and mucoid conversion in Pseudomonas aeruginosa / D. Qiu, [et. al.] // Microbiology. – 2008. – №154. – P. 2119–2130.

53. Rakhimova E. Pseudomonas aeruginosa Population Biology in Chronic Obstructive Pulmonary Disease /E. Rakhimova, [et. al.] // J. Of Inf. Dis. – 2009. – №200. – P. 1928–1935.

54. Rasmussen K. Microelectrode measurements of local mass transport rates in heterogeneous biofilms / K. Rasmussen, Z. Lewandowski // Biotechnol. Bioeng. – 1998. – №59. – P.302–309.

55. Roberts M. E. Modelling protection from antimicrobial agents in biofilms through the formation of persister cells / M.E. Roberts, P. S. Stewart // Microbiology. – 2005. – №151. – P. 75–80.

56. Roy V. Cross species quorum quenching using a native AI-2 processing enzyme // V. Roy, [et. al.] // ACS Chem. Biol. – 2010. – Vol. 5, №2. – P. 223–232.

57. Schumacher M.A. Molecular Mechanisms of HipAMediated Multidrug Tolerance and Its Neutralization by HipB /M.A. Schumacher, [et. al.] // Science. – 2009. – Vol. 323, №5912. – P. 396–401.

58. Simmons W.L. A Stochastic Mechanism for Biofilm Formation by Mycoplasma pulmonis / W.L. Simmons, [et. al.] // J. Bacteriol. – 2007. – Vol. 189, №3. – P. 1905–1913.

59. Simmons W. L. Biofilms Protect Mycoplasma pulmonis Cells from Lytic Effects of Complement and Gramicidin / W.L. Simmons, K. Dybvig // Infect. Immun. – 2007. – Vol. 75, №8. – P. 3696–3699.

60. Simmons W.L. Mycoplasma biofilms ex vivo and in vivo / W.L. Simmons, K. Dybvig // FEMS Microbiol. Lett. –2009. – Vol. 295, №1. – P. 77–81.

61. Smith K. Biofilm formation by Scottish clinical isolates of Staphylococcus aureus / K. Smith, [et. al.] // J. of Med. Microb. – 2008. – №57. –P. 1018–1023.

62. Spoering A. L. GlpD and PlsB Participate in Persister Cell Formation in Escherichia coli / A. L. Spoering, [et. al.] // J. Of Bact. – 2006. – Vol. 188, №14. – P. 5136–5144.

63. Thoendel M. Biosynthesis of peptide signals in grampositive bacteria / M. Thoendel, R. Horswill // Adv. Appl. Microbiol. – 2010. – №71. – P. 91–112.

64. Tomaras A.P. Characterization of a two-component regulatory system from Acinetobacter baumannii that controls biofilm formation and cellular morphology / A.P. Tomaras, [et. al.] // Microbiology. – 2008. – №154. – P. 3398–3409.

65. Tormo M.A. Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer? / M. A´ngeles Tormo, [et. al.] // Microbiology. – 2005. – №151. – P. 2465–2475.

66. Tormo M.A. Phase-variable expression of the biofilmassociated protein (Bap) in Staphylococcus aureus / M. A´ngeles Tormo, [et. al.] // Microbiology. – 2007. – №153. – P.1702–1710.

67. Traber K.E. agr function in clinical Staphylococcus aureus isolates / Katrina E. Traber, [et. al.] // Microbiology. – 2008. – №154. – P. 2265–2274.

68. Van Alst N. E. Nitrate sensing and metabolism modulate motility, biofilm formation, and virulence in Pseudomonas aeruginosa / N.E. Van Alst, [et. al.] // Infect. Immun. – 2007. – Vol.75, №8. – P. 3780–3790.

69. Vergara-Irigaray M. Wall teichoic acids are dispensable for anchoring the PNAG exopolysaccharide to the Staphylococcus aureus cell surface / M. Vergara-Irigaray, [et. al.] // Microbiology. – 2008. – №154. – P.865–877.

70. Vu B. Bacterial extracellular polysaccharides involved in biofilm formation / B. Vu [et. al.] // Molecules. – 2009. – Vol. 14, №7. – P. 2535–2554.

71. Vuong C. Increased Colonization of Indwelling Medical Devices by Quorum-Sensing Mutants of Staphylococcus epidermidis In Vivo / C. Vuong, [et. al.] // J. of Inf. Dis. – 2004. – №190. – P. 1498–505.

72. Williams P. Quorum sensing, communication and crosskingdom signalling in the bacterial world / P. Williams // Microbiology. – 2007. – №153. – P. 3923–3938.

73. Xavier J. B. Biofilm-control strategies based on enzymic disruption of the extracellular polymeric substance matrix – a modelling study / J.B. Xavier, [et. al.] // Microbiology. – 2005. – №151. – P. 3817–3832.

74. Xiong Y. Q. Phenotypic and Genotypic Characteristics of Persistent Methicillin-Resistant Staphylococcus aureus Bacteremia In Vitro and in an Experimental Endocarditis Model / Yan Q. Xiong, [et. al.] // J. of Inf. Dis. – 2009. – №199. – P. 201–209.

75. Yao Y. Genomewide Analysis of Gene Expression in Staphylococcus epidermidis Biofilms: Insights into the athophysiology of S. epidermidis Biofilms and the Role of Phenol-Soluble Modulins in Formation of Biofilms / Y. Yao, [et. al.] // J. of Inf. Dis. – 2005. – №191. – P. 289–298.


Дополнительные файлы

Для цитирования: Гостев В.В., Сидоренко С.В. БАКТЕРИАЛЬНЫЕ БИОПЛЕНКИ И ИНФЕКЦИИ. Журнал инфектологии. 2010;2(3):4-15. https://doi.org/10.22625/2072-6732-2010-2-3-4-15

For citation: Gostev V.V., Sidorenko S.V. Bacterial biofilms and infections. Journal Infectology. 2010;2(3):4-15. (In Russ.) https://doi.org/10.22625/2072-6732-2010-2-3-4-15

Просмотров: 1305

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2072-6732 (Print)
ISSN 2499-9865 (Online)