Preview

Journal Infectology

Advanced search

Poliomyelitis in modern conditions: achievements and prospects

https://doi.org/10.22625/2072-6732-2018-10-2-17-29

Abstract

The creation in the middle of the 20th century vaccines against  poliomyelitis (PM) – inactivated vaccine (IPV) and live oral vaccine  from Sabin strains (OPV) with various properties, advantages and  disadvantages, but highly effective, made it possible to implement  the idea of elimination of PM. Since 1988, the WHO Global Program  of PM eradication has achieved remarkable success: the incidence of  PM caused by wild poliovirus (PV) has been reduced by 10 thousand  times, the number of endemic countries has been reduced to 3, the circulation of wild PV has been discontinued in 4 regions of the  world the wild type 2 of PV has been eradicated, and wild type 3 of  PV has not been detected for almost 5 years. Under conditions of a  decrease in the incidence of PM caused by wild PV, the known  negative properties of trivalent OPV made its further use  problematic. These negative properties are: 1) the ability to cause  post-vaccination complications and 2) the genetic instability of Sabin  strains, especially PV of type 2, and their ability under certain  conditions (primarily in conditions of low collective immunity to PV)  to quickly restore neurovirulence, transforming into circulating  vaccinederived PV (VDPV), capable of causing incidents and  outbreaks of PM. In order to reduce the risk associated primarily with type 2 PV, WHO proposed a global switch to the use of bivalent OPV from types 1 and 3, completed in 2016. In 2019, WHO plans to  complete eradication of type 1 and 3 PVs, and in 2022 completely  abandon the OPV. The precondition for the safety of such tactics is  the maintenance of high collective immunity to PM. There are several  threats to the security of this strategy. PVs can “silently”  circulate in the human population for a long time without clinical  manifestations of PM, which, with inadequate epidemiological  surveillance can lead to the return of PM. The reintroduction of both  wild PV and Sabin strains can occur from institutions that preserve / work with PV. The source of VDPV can be people with primary immunodeficiencies, which continuously excrete PV. It is necessary to maintain surveillance over the PM, expand additional types of surveillance for the PV, strict containment of all  PVs. The only way to maintain collective immunity is immunization with trivalent IPV. The current global shortage of IPV poses a  significant threat to the world’s epidemiological well-being. The  solution to the problem is the development of a new generation of  safe and effective vaccines, improving the ways of introducing IPV, developing antiviral drugs.

About the Author

O. E. Ivanova
Federal Scientific Center for Research and Development of Immune-and-Biological Products named after M.P. Chumakov First Moscow State Medical University named after I.M. Sechenov
Russian Federation
Moscow, Russia


References

1. WHO. World Health Assembly. Global Eradication of poliomyelitis by the year 2000. Resolution WHA 11.28. Geneva: 1988. Available at: http://www.who.int/ihr/polioresolution4128en.pdf)

2. WHO. Polio vaccines: WHO position paper - March, 2016. Wkly Epidemiol Rec. 2016; 91 (12): 145-168.

3. Okayasu H., Sutter R.W., Czerkinsky C., Ogra P.L. Mucosal immunity and poliovirus vaccines: impact on wild poliovirus infection and transmission. Vaccine. 2011; 29 (46): 8205-8214.

4. Anis E., Kopel E., Singer S.R., Kaliner R., Moerman L., Moran-Gilad J. et al. Insidious reintroduction of wild poliovirus into Israel, 2013. Eurosurveillance. 2013; 18 (38). Available at: http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20586).

5. Sutter R.W., Kew O.M., Cochi S.L., Aylward R.B. Poliovirus vaccine-live. In: Plotkin S.A., Orenstein W.A., Offit P.A., eds. Vaccines, 6th ed. Philadelphia, PA: Elsevier-Saunders; 2013: 598-645.

6. Voroshilova M.K. Immunologiya, ehpidemiologiya i profilaktika poliomielita i skhodnyh s nim zabolevanij. M.: Medicina; 1966. 439 c.

7. Olivé J-M., Risi J.B., de Quadros C.A. National Immunization Days: experience in Latin America. J Infect Dis. 1997; 175(S1):189-193.

8. CDC. Certification of poliomyelitis eradication – the Americas, 1994. Morbid Mortal Wkly Rep. 1994; 43: 720-722.

9. Platt L.R., Estivariz C.F., Sutter R.W. Vaccine-associated paralytic poliomyelitis: a review of the epidemiology and estimation of the global burden. J Infect Dis. 2014; 210 (S1): 380 – 389.

10. Alexander L.N., Seward J.F., Santibanzes T.A., Pallansch M.A., Kew O.M., Prevots D.R. et al. Vaccine policy changes and epidemiology of poliomyelitis in the United States. JAMA. 2004; 292 (14):1696 – 1701.

11. Ivanova O.E. Eremeeva T.P., Morozova N.S., Shakaryan A.K., Gmyl A.P., Yakovenko M.L. i dr. Vakcinoassociirovannyj paraliticheskij poliomielit v Rossijskoj Federacii v period izmeneniya skhemy vakcinacii (2006-2013 gg.). Vopr virusol. 2016; 61(1): 9-16.

12. Aylward R.B., Hull H.F., Cochi S.L. Sutter R. W., Olive J.-M., Melgaard B. Disease eradication as a public health strategy: a case study of poliomyelitis eradication. Bull World Health Organ. 2000; (3): 285-297.

13. WHO. Available at: http://polioeradication.org/financing/)

14. WHO. Available at: https://extranet.who.int/polis/public/CaseCount.aspx)

15. CDC. Certification of poliomyelitis eradication – the Western Pacific region, October 2000. Morbid Mortal Wkly Rep. 2001; 50: 1-3.

16. CDC. Certification of poliomyelitis eradication - European Region, June 2002. Morbid Mortal Wkly Rep. 2002; 51: 572-574.

17. WHO. Transmission of wild poliovirus type 2 – apparent global interruption. Wkly Epidemiol Rec. 2001; 76 (13): 95- 97.

18. Grassly N.C., Fraser C., Wenger J. Deshpande J.M., Sutter R.W., Heymann D.L., et al. New Strategies for the Elimination of Polio from India. Science. 2006; 314 (5802): 1150-1153.

19. Bahl S., Kumar R., Menabde N., Thapa A., McFarland J., Swezyet V., al. Polio- free certification and lessons learned – South-East Asia. Morbid Mortal Wkly Rep. 2014; 63 (42): 941- 946.

20. Burns C., Diop O.M., Sutter R.W., Kew O.M. Vaccine-Derived Polioviruses. J Infect Dis. 2014; 210 (S 1): 283-293.

21. Kew O.M., Sutter R.W., de Gourville E.M., Dowdle W.R., Pallansch M.A. Vaccine- derived polioviruses and the endgame strategy for global polio eradication. Annu Rev Microbiol. 2005; 59: 587-635.

22. Wassilak S., Pate M.A., Wannemuehler K., Jenks, J., Burns, C., Chenoweth, P., et al. Outbreak of type 2 vaccine-derived poliovirus in Nigeria: emergence and widespread circulation in an underimmunized population. J Infect Dis. 2011; 203 (7): 898-909.

23. Yang C., Naguib T., Yang S., Nasr E., Jorba J., Ahmed N., et al. Circulation of endemic type 2 vaccine-derived poliovirus in Egipt from 1983-1993. J Virol. 2003; 77 (15): 8366-8377.

24. WHO. Available at: http://polioeradication.org/wp-content/uploads/2016/07/GPEI-cVDPV-factsheet_March-2017.pdf)

25. WHO. Available at: http://polioeradication.org/poliotoday/polio-now/this-week/circulating-vaccine-derived-poliovirus/

26. Diop O.M., Asghar H., Gavrilin E., Moeletsi N.G., Benito G.R., Paladin F., et al. Virologic Monitoring of Poliovirus Type 2 after Oral Poliovirus Vaccine Type 2 Withdrawal in April 2016 - Worldwide, 2016-2017. Morbid Mortal Wkly Rep. 2017; 66 (20): 538-542.

27. DeVries A.S., Harper J., Murray A., Lexau C., Bahta .L, Christensen J., et al. Vaccine-derived poliomyelitis 12 years after infection in Minnesota. N Engl J Med. 2011; 364 (24): 2316- 2323.

28. WHO. Available at: http://polioeradication.org/poliotoday/polio-prevention/the-virus/vaccine-derived-polio-viruses/

29. Khetsuriani N., Prevots D.R., Quick L., Elder M.E, Pallansch M, Kew O. et al. Persistence of vaccine-derived polioviruses among immunodeficient persons with vaccine-associated paralytic poliomyelitis. J Infect Dis. 2003; 188 (12): 1845-1852.

30. Ivanova O.E., Silenova O.V., Setdikova N.H., Latysheva T.V., Kondratenko I.V., Eremeeva T.P. i dr. Poisk lic, dlitelno vydelyayushchih virus poliomielita, sredi bolnyh s pervichnymi immunodeficitami v Rossijskoj Federacii. Epidemiologiya i vakcinoprofilaktika. 2014; 6 (79): 8-16.

31. de Silva R., Gunasena S., Ratnayake D. Wickremesinghe G.D., Kumarasiri C.D., Pushpakumara B.A., et al. Prevalence of prolonged and chronic poliovirus excretion among persons with primary immune deficiency disorders in Sri Lanka. Vaccine. 2012; Vol. 30 (52): 7561-7565.

32. Halsey N.A., Pinto J., Espinosa-Rosales F., Faure-Fontenla M.A., da Silva E., Khan A.J.,et al. Search for poliovirus carriers among people with primary immune deficiency diseases in the United States, Mexico, Brazil, and the United Kingdom. Bull World Health Organ. 2004; 82 (1): 3-8.

33. Li L., Ivanova O., Driss N., Tiongco-Recto M., da Silva R., Shahmahmoodi S., et al. Poliovirus excretion among persons with primary immune deficiency disorders: summary of a seven-country study series. J Infect Dis. 2014; 210 (S 1): 368-372.

34. WHO. Polio Eradication & Endgame Strategic Plan 2013-2018. Available at: http://polioeradication.org/wp-content/uploads/2016/07/PEESP_EN_A4.pdf)

35. Agol V., Cello J., Chumakov K., Ehrenfeld E., Wimmer E. Eradicating polio: A balancing act. Science. 2016; 351 (6271): 348.

36. Chumakov K., Ehrenfeld E., Wimmer E., Agol V.I. Vaccination against polio should not be stopped. Nat Rev Microbiol. 2007; 5 (12): 952-958.

37. Lopez-Medina E., Melgar M., Gaensbauer J.T., Bandyopadhyay A.S., Borate B.R., Weldon W.C., et al. Inactivated polio vaccines from three different manufacturers have equivalent safety and immunogenicity when given as 1 or 2 additional doses after bivalent OPV: Results from a randomized controlled trial in Latin America. Vaccine. 2017; 35 (28): 3591-3597.

38. Tebbens R.J.D., Pallansch M.A., Kew O.M., Caceres V.M., Jafari H., Cochi S.L., et al. Risks of Paralytic Disease Due to Wild or Vaccine-Derived Poliovirus After Eradication. Risk Anal. 2006; 26 (6): 1471–1505.

39. WHO. Protocol for notification, risk assessment, and response following detection of poliovirus type 2 following globally-coordinated cessation of serotype 2-containing oral polio vaccine. Available at: http://www.who.int/immunization/sage/meetings/2014/october/6_Type_2_response_protoco l_14_oct_clean.pdf

40. Duintjer Tebbens R.J., Pallansch M.A., Wassilak S.G., Cochi S.L., Thompson K.M.,et al. Characterization of outbreak response strategies and potential vaccine stockpile needs for the polio endgame. BMC Infect Dis. 2016; 24 (16): 137. Available

41. at: https://doi.org/10.1186/s12879-016-1465-7

42. WHO. SOP. Responding to a poliovirus event or outbreak. Part 2. Protocol for poliovirus type 2. WHO 2017. Available at: http://polioeradication.org/wp- content/uploads/2017/05/POL-SOPs-Part-2-260517-.pdf)

43. Garon J., Sutter R.W., Orenstein W. High population immunity reduces poliovirus community transmission. The Lancet Infect Dis. 2017; 17 (10): 1009-1011. Available at: http://www.thelancet.com/journals/laninf/article/PIIS1473-3099(17)30417-6/fulltext

44. Bah S.l, Hampton L.M., Bhatnagar P., Gao G.S., Haldar P., Sangal L., et al. Detection of Sabin-like type 2 poliovirus after global cessation of trivalent oral poliovirus vaccine in Hyderabad and Ahmedabad, India, August–September 2016. Wkly Epidemiol Rec. 2017; 92 (1): 9-11.

45. WHO. WHO Global Action Plan to minimize poliovirus facility-associated risk after type-specific eradication of wild polioviruses and sequential cessation of oral polio vaccine use – GAP III// WHO. Geneva, Switzerland. 2015. Available at: http://polioeradication.org/wp-content/uploads/2016/12/GAPIII_2014.pdf)

46. Previsani N., Singh H., St Pierre J., Boualam L., Fournier-Caruana J., Sutter R.W. et al. Progress Toward Containment of Poliovirus Type 2 - Worldwide, 2017. Morbid Mortal Wkly Rep. 2017; 66(24). P. 649-652.

47. Mulders M.N., Reimerink J.H., Koopmans M.P., van Loon A.M., van der Avoort H.G.A.M. Genetic analysis of wildtype poliovirus importation into The Netherlands (1979-1995. J Infect Dis. 1997; 176(3): 617-624.

48. Deshpande J.M., Nadkarni S.S., Siddiqui Z.A. Detection of MEF-1 laboratory reference strain of poliovirus type 2 in children with poliomyelitis in India in 2002 & 2003. Indian J Medical Res. 2003; 118: 217-223.

49. Ivanova O.E., Eremeeva T.P., Korotkova E.A., Yakovenko M.L., Kuribko S.G., Fedorova V.B. i dr. Likvidaciya poliomielita v mire: vnutrilaboratornaya kontaminaciya dikim poliovirusom v usloviyah vypolneniya programmy bezopasnogo laboratornogo hraneniya dikih poliovirusov (kontejnmenta) v Rossijskoj Federacii. Voprosy virusologii. 2006; 6: 43-46.

50. Davies M., Bruce C., Bewley K., Outlaw M., Mioulet V., Lloyd G., et al. Poliovirus type 1 in working stocks of typed human rhinoviruses. Lancet. 2003; 361 (9364): 1187-1188.

51. Savoilainen C., Hovi T. Caveat: poliovirus may be hiding under other labels. Lancet. 2003; 361 (9364): 1145-1146.

52. Pallansch M., Staples M. Wild polioviruses found in stored potential infectious materials. WHO. Polio Lab Network. 2002; 8: 1-2.

53. Previsani N. European Center for Disease Control. Poliomyelitis-facility-related infection with WPV2—Netherlands. Communicable disease threats report. Week 16, April 16–22. 2017. Available at: https://ecdc.europa.eu/sites/portal/files/documents/Communicable%20Disease%20Threats %20Report%2C%2022%20April%202017.pdf)

54. Dunn G, Klapsa D., Wilton T., Stone L, Minor P.D., Martin J. Twenty-Eight Years of Poliovirus Replication in an Immunodeficient Individual: Impact on the Global Polio Eradication Initiative. PLoS Pathog. 2015; 11(8): 1-15. Available at: http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005114)

55. Duintjer Tebbens R.J., Pallansch M.A., Thompson K.M. Modeling the prevalence of immunodeficiency-associated long-term vaccine-derived poliovirus excretors and the potential benefits of antiviral drugs. BMC Infect Dis. 2015; 15: 379. Available at: https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-015-1115-5)

56. Chen Z., Chumakov K., Dragunsky E., Kouiavskaia D., Makiya M., Neverov A., et al. Chimpanzee-human monoclonal antibodies for treatment of chronic poliovirus excretors and emergency postexposure prophylaxis. J of Virol. 2011; 85(9): 4354- 4362.

57. McKinlay M.A., Collett M.S., Hincks J.R., Oberste M.S., Pallansch M.A., Okayasu H., et al. Progress in the Development of Poliovirus Antiviral Agents and Their Essential Role in Reducing Risks That Threaten Eradication. J Infect Dis. 2014; 210 (S 1): 447-453.

58. Verdijk P., Rots N.Y., Bakker W.A. Clinical development of a novel inactivated poliomyelitis vaccine based on attenuated Sabin poliovirus strains. Expert Rev Vaccines. 2011; 10(5): 635-644.

59. Okayasu H., Sein C., Hamidi A., Bakker WA, Sutter RW. Development of inactivated poliovirus vaccine from Sabin strains: A progress report. Biologicals. 2016; 44 (6): 581-587.

60. Shimizu H. Development and introduction of inactivated poliovirus vaccines derived from Sabin strains in Japan. Vaccine. 2016; 34 (16): 1975–1985.

61. Ivanov A.P., Klebleeva T.D, Ivanova O.E., Ipatova E.G., Gmyl L.V., Ishmuhametov A.A. Eksperimentalnye podhody k razrabotke inaktivirovannoj poliovirusnoj vakciny na osnove shtammov Sebina. Epidemiologiya i vakcinoprofilaktika. 2016; 4 (89): 59-64.

62. Chumakov K., Ishmuhametov A. Vakciny protiv poliomielita: nastoyashchee i budushchee. V kn: Lukashevich I.S., Shirvan G.S., red. Sovremennye vakciny: tekhnologii razrabotki i oblasti primeneniya. M.: OOO Gruppa Remedium, 2017: 81-102.

63. Fox H., Knowlson S., Minor P.D., Macadam A.J. Genetically thermos-stabilised, immunogenic poliovirus empty capsids; a strategy for non-replicating vaccines. PLOS Pathogens. 2017; January 19: 1-14: Available at: http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1006117).

64. Sanders B.P., Oakes Ide L., van Hoek V., Liu Y., Marissen W., Minor P.D., et al. Production of high titer attenuated poliovirus strains on the serum-free PER.C6(®) cell culture platform for the generation of safe and affordable next generation IPV. Vaccine. 2015; 33(48): 6611-6616.

65. Verdijk P., Rots N.Y., van Oijen M.G., Weldon W.C., Oberste M.S., Okayasu H., et al. Safety and immunogenicity of a primary series of Sabin-IPV with and without aluminum hydroxide in infants. Vaccine. 2014; 32(39): 938-944.

66. Jarrahian C., Weston A-R., Saxon G, Creelman B., Kachmarik G., Anand A.,et al. Vial usage, device dead space, vaccine wastage, and dose accuracy of intradermal delivery devices for inactivated poliovirus vaccine (IPV). Vaccine. 2017; 35 (14): 1789–1796.

67. Resik S., Tejeda A., Diaz M., Okayasu H,, Sein C,, Molodecky N,A., et al. Boosting Immune Responses Following Fractional- Dose Inactivated Poliovirus Vaccine: A Randomized, Controlled Trial. J Infect Dis. 2017; 215(2): 175-182.

68. Kraan H., Soema P., Amorij J-P., Kersten G. Intranasal and sublingual delivery of inactivated polio vaccine. Vaccine. 2017; 35 (20): 2647–2653.

69. Schipper P., van der Maaden K., Romeijn S., Oomens C., Kersten G., Jiskoot W., et al. Repeated fractional intradermal dosing of an inactivated polio vaccine by a single hollow microneedle leads to superior immune responses. J Control Release. 2016; 242: 141-147.

70. WHO. Meeting of the Strategic Advisory Group of experts on immunization, April 2017 – conclusions and recommendations. Wkly Epidemiol Rec. 2017; 92 (22): 301-320.


Review

For citations:


Ivanova O.E. Poliomyelitis in modern conditions: achievements and prospects. Journal Infectology. 2018;10(2):17-29. (In Russ.) https://doi.org/10.22625/2072-6732-2018-10-2-17-29

Views: 1536


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-6732 (Print)