Preview

Journal Infectology

Advanced search

EFFECTIVENESS OF CROSS-PROTECTIVE RECOMBINANT INFLUENZA VACCINE BASED ON CONSERVED EPITOPES OF VIRAL PROTEINS М2 AND HEMAGGLUTININ

https://doi.org/10.22625/2072-6732-2017-9-4-43-52

Abstract

The influenza virus is the most unique in the level of variability of antigenic and biological properties. Because of constant mutations into genes coding surface viral proteins, in modern vaccines it is necessary to replace 1–2 virus components annually. Traditional influenza vaccines are the strain – specific and have limited efficiency in prevention of new strains of influenza viruses. In this regard, creation of influenza vaccines based on conserved determinants of viral proteins with broad spectrum protection and the short period of production is one of priority tasks which decision will lead to real control of an influenza infection. A current trend in the design of universal flu vaccines is the construction of recombinant proteins based the combination of conserved viral proteins or peptides. The goals of this study: to develop the candidate recombinant flu vaccine based on the two conserved influenza proteins (М2 and НА); to investigate immune response; and to measure the protection activity in an animal model. Results: In this study we investigated the humoral and T-cell response in mice after intranasal immunization with recombinant proteins (Flg-4M2ehs and Flg-HA2-2-4M2ehs). Both proteins induce a robust M2e-specific humoral and CD4+ T-cell response in mice lung. The recombinant protein with two target antigens (M2e and HA2) induces virusspecific CD4+ and CD8+ T-cell response and full protection (100% survival) of mice from lethal challenge human and avian influenza viruses A (A/H3N2, A/H2N2, A/H5N1). In mice immunized with Flg-4M2ehs, the survival after lethal challenge was 60–75%. Conclusion: Our results show an essential role of a conserved fragment of the HA2 in the formation of protective T-cell response and protection of mice from lethal challenge with influenza viruses A of various subtypes. The prospects of the development of vaccine formulation based on two conserved antigenic determinants of influenza virus A are shown.

About the Authors

L. A. Stepanova
Science Research Institute of Influenza.
Russian Federation
Saint-Petersburg.


M. A. Shuklina
Science Research Institute of Influenza.
Russian Federation
Saint-Petersburg.


E. A. Blokhina
Federal Research Centre «Fundamentals of Biotechnology».
Russian Federation
Moscow.


R. Y. Kotlyarov
Federal Research Centre «Fundamentals of Biotechnology».
Russian Federation
Moscow.


A. A. Kovaleva
Science Research Institute of Influenza.
Russian Federation
Saint-Petersburg.


N. V. Ravin
Federal Research Centre «Fundamentals of Biotechnology».
Russian Federation
Moscow.


L. M. Tsybalova
Science Research Institute of Influenza.
Russian Federation
Saint-Petersburg.


References

1. Huleatt, J.W. Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin / J.W. Huleatt [et al.] / Vaccine. – 2008. – Vol. 26. – P. 201–214.

2. Schotsaert, M. Universal M2 ectodomain-based influenza A vaccines: preclinical and clinical developments / M. Schotsaert [et al.] / Expert. Rev. Vaccines. – 2009. – Vol. 8. – P. 499–508.

3. Kim, M-C. Virus-like Particles Containing Multiple M2 Extracellular Domains Confer Improved Cross-protection Against Various Subtypes of Influenza Virus / M-C. Kim [et al.] / Molecular Therapy. – 2013. – Vol. 21. – P. 485–492.

4. Stepanova, L.A. Protection against multiple influenza A virus strains induced by candidate recombinant vaccine based on heterologous M2e peptides linked to flagellin / L.A. Stepanova [et al.] / PLoS One. – 2015. – Vol. 10. – e0119520.

5. Tsybalova, L.M. Development of a candidate influenza vaccine based on virus-like particles displaying influenza M2e peptide into the immunodominant region of hepatitis B core antigen: Broad protective efficacy of particles carrying four copies of M2e / L.M. Tsybalova [et al.] / Vaccine. – 2015. – Vol. 33. – P. 3398–3406.

6. Taylor, D.N. Induction of a potent immune response in the elderly using the TLR-5 agonist, flagellin, with a recombinant hemagglutinin influenza-flagellin fusion vaccine (VAX125, STF2.HA1 SI) / D.N. Taylor [et al.] / Vaccine. – 2011. – Vol. 29. – P. 4897–4902.

7. Turley, C.B. Safety and immunogenicity of a recombinant M2e-flagellin influenza vaccine (STF2.4xM2e) in healthy adults / C.B. Turley [et al.] / Vaccine. – 2011. – Vol. 29. – P. 5145–5152.

8. Wang, T.T. Broadly protective monoclonal antibodies against H3 influenza viruses following sequential immunization with different hemagglutinins / T.T. Wang [et al.] / PloS Pathog. – 2010. – Vol. 6. – P. e1000796.

9. Ekiert, D.C. A highly conserved neutralizing epitope on group 2 influenza A viruses / D.C. Ekiert [et al.] / Science. – 2011. – Vol. 333. – P. 843–850.

10. Wrammert, J. Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. / J. Wrammert [et al.] / J. Exp. Med. – 2011. – Vol. 208. – P. 181–193.

11. Wang, T.T. Vaccination with a synthetic peptide from the influenza virus hemagglutinin provides protection against distinct viral subtypes / T.T. Wang [et al.] / Proc. Natl. Acad. Sci. U S A. – 2010. – Vol. 107. – P. 18979–18984.

12. Bommakanti, G. Design of an HA2-based Escherichia coli expressed influenza immunogen that protects mice from pathogenic challenge / G. Bommakanti [et al.] / Proc. Natl. Acad. Sci. U S A. – 2010. – Vol. 107. – P. 13701–1376.

13. Ameghi, A. Protective immunity against homologous and heterologous influenza virus lethal challenge by immunization with new recombinant chimeric HA2-M2e fusion protein in balb/c mice / A. Ameghi [et al.] / Viral. Immunol. – 2016. – Vol. 29. – P. 228–234.

14. Stepanova, L.A. A Fusion Protein Based on the Second Subunit of Hemagglutinin of Influenza A/H2N2 Viruses Provides Cross Immunity / L.F. Stepanova [et al.] / Acta Naturae. – 2016. – Vol. 8. – P. 116–126.

15. Gong, X. Conserved stem fragment from H3 influenza hemagglutinin elicits cross-clade neutralizing antibodies through stalk-targeted blocking of conformational change during membrane fusion / X. Gong [et al.] / Immunol. Lett. – 2016. – Vol. 172. – P. 11–20.

16. Jegerlehner, A. Influenza A vaccine based on the extracellular domain of M2: weak protection mediated via antibodydependent NK cell activity / A. Jegerlehner [et al.] / J. Immunol. – 2004. – Vol. 172. – P. 5598–5605.

17. Feng, J. Influenza A virus infection engenders a poor antibody response against the ectodomain of matrix protein 2 / J. Feng [et al.] / Virol. J. – 2006. – Vol. 3. – P.102.

18. Khanna, M. Protective immunity based on the conserved hemagglutinin stalk domain and its prospects for universal influenza vaccine Development / M. Khanna [et al.] / BioMed. Res. Int. – 2014. – 2014:546274.

19. Honko, A.N. Flagellin is an effective adjuvant for immunization against lethal respiratory challenge with Yersinia pestis / A.N. Honko [et al.] / Infect. Immun. – 2006. – Vol. 74. – P. 1113–1120.

20. Bates, J.T. Mucosal adjuvant activity of flagellin in aged mice / J.T.Bates [et al.] / Mech. Ageing Dev. – 2008. – Vol. 129. – P. 271–281.

21. Liu, G. Flagellin-HA vaccines protect ferrets and mice against H5N1 highly pathogenic avian influenza virus (HPAIV) infections / G. Liu [et al.] / Vaccine. – 2012. – Vol. 30. – P. 6833–6838.

22. Katoh, K. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform/ K. Katon [et al.] / Nucleic Acids Res. – 2002. – Vol. 30. – P. 3059–3066.

23. Okonechnikov, K. Unipro UGENE: a unified bioinformatics toolkit / K. Okonechnikov [et al.] / Bioinformatics. – 2012. – Vol. 28. – P. 1166–1167.

24. Lee, Y.N. Mechanisms of cross-protection by influenza virus M2-based vaccines / Y.N. Lee [et al.] / Immune Netw. – 2015. – Vol. 15. – P. 213–221.

25. Swain, S.L. Expanding roles for CD4+ T cells in immunity to viruses / S.L. Swain, K.K. McKinstry, T.M. Strutt / Nat. Rev. Immunol. – 2012. – Vol. 12. – P. 136–148.

26. McKinstry, K.K. Memory CD4+ T cells protect against influenza through multiple synergizing mechanism / K.K. McKinstry [et al.] / J. Clin. Invest. – 2012. – Vol. 122. – P. 2847–2856.

27. Eliasson, D.G. M2e-tetramer-specific memory CD4 T cells are broadly protective against influenza infection / D.G. Eliasson [et al.] / Mucosal Immunol. – 2017. – doi: 10.1038/ mi.2017.14.

28. Sridhar, S. Cellular immune correlates of protection against symptomatic pandemic influenza / S. Sridhar [et al.] / Nat. Med. – 2013. – Vol. 19. – P. 1305–1312.

29. Zhou, L. Sudden increase in human infection with avian influenza A(H7N9) virus in China, Semptember- December 2016 / L. Zhou [et al.] / Western Pac. Surveill Response J. – 2017. – Vol. 8. – P. 1–9.


Review

For citations:


Stepanova L.A., Shuklina M.A., Blokhina E.A., Kotlyarov R.Y., Kovaleva A.A., Ravin N.V., Tsybalova L.M. EFFECTIVENESS OF CROSS-PROTECTIVE RECOMBINANT INFLUENZA VACCINE BASED ON CONSERVED EPITOPES OF VIRAL PROTEINS М2 AND HEMAGGLUTININ. Journal Infectology. 2017;9(4):43-52. (In Russ.) https://doi.org/10.22625/2072-6732-2017-9-4-43-52

Views: 974


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-6732 (Print)