РОЛЬ ТРОМБОЦИТОВ В ПАТОГЕНЕЗЕ БАКТЕРИАЛЬНЫХ ИНФЕКЦИЙ


https://doi.org/10.22625/2072-6732-2017-9-4-5-13

Полный текст:


Аннотация

За последние годы скопилась критическая масса информации, которая позволила определить тромбоциты как клетки врожденного иммунитета, обеспечивающие инициацию воспаления и защитных иммунных реакций. В представленном обзоре литературы тромбоциты рассмотрены с точки зрения их участия в реакциях антибактериального иммунитета. Описаны механизмы, позволяющие тромбоцитам распознавать бактерии и их растворимые продукты, характерные как для клеток иммунной системы (через рецепторы TLR2, TLR4, TLR7 и TLR9, FcγRIIa и рецепторы для компонентов комплемента), так и для структур, задействованных в процессе гемостаза (через рецепторы GPIb, GPIIb-IIIa). Следствием распознавания бактерий является активация тромбоцитов, инициация ими гемокоагуляции и врожденного иммунного ответа. Показана способность тромбоцитов фагоцитировать бактерии и останавливать их рост за счет выраженного микробицидного потенциала (который описывается как тромбоцидины, или микробицидные белки тромбоцитов, и β-дефензины человека hBD-1, -2 и -3), которым обладают эти безъядерные клетки. Обсуждается, что бактерии активно противодействуют антимикробным реакциям тромбоцитов, в том числе используя различные токсины. Выделено несколько групп бактериальных токсинов, которые активируют тромбоциты, разрушая электрохимический градиент плазматической мембраны, перфорируя ее. Ряд токсинов вызывают активацию тромбоцитов и клеток иммунной системы, действуя как суперантигены. В реакциях антибактериального иммунитета тромбоциты привлекают нейтрофилы, моноциты и активируют систему комплемента. При этом тромбоциты действуют совместно с этими клетками и белками, способствуя полному раскрытию микробицидного потенциала фагоцитов и комплемента. Особенно это важно при инфекциях бактериями, контролировать которые не способны только моноциты/макрофаги или только тромбоциты, но, объединяясь, они создают необходимые условия для клиренса патогенных бактерий из циркуляции.

Об авторах

Н. Б. Серебряная
Северо-Западный медицинский университет им. И.И. Мечникова; Институт экспериментальной медицины; Санкт-Петербургский государственный университет.
Россия

Серебряная Наталья Борисовна – профессор кафедры клинической микологии, аллергологии и иммунологии Северо-Западного государственного медицинского университета им. И.И. Мечникова, ведущий научный сотрудник отдела общей патологии и патологический физиологии Института экспериментальной медицины, профессор кафедры гистологии и цитологии Санкт-Петербургского государственного университета, доктор медицинских наук, профессор.

Санкт-Петербург.



П. П. Якуцени
Санкт-Петербургский государственный политехнический университет Петра Великого.
Россия

Якуцени Павел Павлович – главный научный сотрудник Центра перспективных исследований, доктор биологических наук.

Санкт-Петербург.

 



Н. Н. Климко
Северо-Западный медицинский университет им. И.И. Мечникова.
Россия

Климко Николай Николаевич – заведующий кафедрой клинической микологии, аллергологии и иммунологии, доктор медицинских наук, профессор. 

Санкт-Петербург.



Список литературы

1. Серебряная, Н.Б. Тромбоциты при опухолевых заболеваниях: неожиданные возможности давно знакомых клеток / Н.Б. Серебряная, К.А. Васильев, П.П. Якуцени // Вопросы онкологии. – 2015. – Т.60, № 5. – С. 725 –736.

2. Серебряная, Н.Б. Тромбоциты как участники внутрисосудистых иммунных реакций / Н.Б. Серебряная, Е.В. Казеннова, П.П. Якуцени // Российский иммунологический журнал. – 2016. – Т. 10(19), №2(1). – С. 46–48.

3. Серебряная, Н.Б. Тромбоциты как регуляторы гематоэнцефалического барьера / Н.Б. Серебряная, П.П. Якуцени // Российский иммунологический журнал. 2016 – Т. 10(19), №2(1). – С, 48 –50.

4. Levaditi C. Et des organism vaccines contre le vibron cholerique. Ann Inst Pasteur. 1901; 15:894-924.

5. Clawson CC, White JG. Platelet interaction with bacteria. I. Reaction phases and effects of inhibitors. Am. J. Pathol. 1971; 65:367-380.

6. Clawson CC, White JG. Platelet interaction with bacteria. II. Fate of the bacteria, Am. J. Pathol. 1971; 65:381-397.

7. Clawson CC, Rao GH, White JG. Platelet interaction with bacteria. IV. Stimulation of the release reaction. Am. J. Pathol. 1975; 81:411-20.

8. Clawson CC. Effects of small latex particle uptake on the surface connected canalicular system of blood platelets: a freeze-fracture and cytochemical study. Diagn. Histopathol. 1982; 5:3-10.

9. Hamzeh-Cognasse H, Damien P, Chabert A, et al. Platelets and infections - complex interactions with bacteria. Front Immunol. 2015; 6:82.

10. Deppermann C, Kubes P. Platelets and infection. Semin Immunol. 2016; 28(6):536-545

11. Cognasse F, Nguyen KA, Damien P, et al. The Inflammatory Role of Platelets via Their TLRs and Siglec Receptors. Front Immunol. 2015; 6:83- 93.

12. Andonegui G, Kerfoot SM, McNagny K, et al. Platelets express functional Toll-like receptor-4. Blood. 2005; 106(7):2417-2423.

13. Cox D, Kerrigan SW, Watson SP. Platelets and the innate immune system: mechanisms of bacterial-induced platelet activation. J Thromb. Haemost. 2011; 9:1097-107.

14. Thon JN, Peters CG, Machlus KR, et al. T-granules in human platelets function in TLR9 organization and signaling. J. Cell Biol. 2012; 198(4):561-574.

15. Fitzgerald JR, Foster TJ, Cox D. The interaction of bacterial pathogens with platelets. Nat Rev Microbiol. 2006; 4:445-457.

16. Worth RG, Chien CD, Chien P, et al. Platelet FcgammaRIIA binds and internalizes IgG-containing complexes. Exp. Hematol. 2006; 34(11):1490-1495.

17. Antczak AJ, Vieth JA, Singh N, Worth RG, Internalization of IgG-coated targets results in activation and secretion of soluble CD40 ligand and RANTES by human platelets. Clin Vaccine Immunol. 2011; 18(2):210-216.

18. Huang ZY, Chien P, Indik ZK, Schreiber AD, Human platelet FcgammaRIIA and phagocytes in immune-complex clearance. Mol. Immunol. 2011; 48:691–696.

19. Zucker-Franklin D, Seremetis S, Zheng ZY, Internalization of human immunodeficiency virus type I and other retroviruses by megakaryocytes and platelets. Blood. 1990; 75(10):19201923.

20. Del Conde I, Crúz MA, Zhang H, et al. Platelet activation leads to activation and propagation of the complement system. J. Exp. Med. 2005; 201:871-879.

21. Speth C, Rambach G, Würzner R, et al. Complement and platelets: Mutual interference in the immune network. Mol Immunol. 2015; 67(1):108-118.

22. Arvand M, Bhakdi S, Dahlback B, Preissner KT, Staphylococcus aureus alpha-toxin attack on human platelets promotes assembly of the prothrombinase complex. J. Biol. Chem. 1990; 265(24):14377-14381.

23. Bryant AE, Bayer CR, Chen RY, et al. Vascular dysfunction and ischemic destruction of tissue in Streptococcus pyogenes infection: the role of streptolysin O-induced platelet/ neutrophil complexes. J. Infect. Dis. 2005; 192:1014-1022.

24. Johnson MK, Boese-Marrazzo D, Pierce WA Jr. Effects of pneumolysin on human polymorphonuclear leukocytes and platelets. Infect Immun. 1981; 34:171–176.

25. Kraemer BF, Campbell RA, Schwertz H, et al. Bacteria differentially induce degradation of Bcl-xL, a survival protein, by human platelets. Blood. 2012; 120(25):5014-5020.

26. Herrera A, Kulhankova K, Sonkar VK, et al. Staphylococcal β-Toxin Modulates Human Aortic Endothelial Cell and Platelet Function through Sphingomyelinase and Biofilm Ligase Activities. MBio. 2017; 8(2): e00273-17.

27. Fitzpatrick RE, Wijeyewickrema LC, Pike RN. The gingipains: scissors and glue of the periodontal pathogen, Porphyromonas gingivalis. Future Microbiol. 2009; 4:471-487.

28. Berube BJ, Wardenburg JB. Staphylococcus aureus - toxin: nearly a century of intrigue. Toxins (Basel). 2013; 6:11401166.

29. Cox D. Bacteria-platelet interactions. J. Thromb. Haemost. 2009; 7:1865-1866.

30. Petersen HJ, Keane C, Jenkinson HF, et al. Human platelets recognize a novel surface protein, PadA, on Streptococcus gordonii through a unique interaction involving fibrinogen receptor GPIIbIIIa. Infect. Immun. 2010; 78(1):413–22.

31. White JG, Clawson CC. Effects of large latex particle uptake of the surface connected canalicular system of blood platelets: a freeze-fracture and cytochemical study. Ultrastruct. Pathol. 1981; 2(3):277–287.

32. White JG. Why human platelets fail to kill bacteria. Platelets. 2006; 17(3):191-200.

33. Youssefian T, Drouin A, Masse JM, et al. Host defense role of platelets: engulfment of HIV and Staphylococcus aureus occurs in a specific subcellular compartment and is enhanced by platelet activation. Blood. 2002; 99(11):4021-4029.

34. Yeaman MR. Bacterial-platelet interactions: virulence meets host defense. Future Microbiol. 2010; 5(3):471-506.

35. Wong CHY, Jenne CN, Petri B, et al. Nucleation of platelets with blood-borne pathogens on Kupffer cells precedes other innate immunity and contributes to bacterial clearance. Nat. Immunol. 2013; 14(8):785-792.

36. Guani-Guerra E, Santos-Mendoza T, Lugo-Reyes SO, Teran LM. Antimicrobial peptides: general overview and clinical implications in human health and disease. Clin. Immunol. 2010; 135:1–11.

37. Trier DA, Gank KD, Kupferwasser D, et al.Platelet antistaphylococcal responses occur through P2X1 and P2Y12 receptor-induced activation and kinocidin. Infect Immun. 2008; 76(12):5706-5713.

38. Yang D, Chen Q, Hoover DM, et al. Many chemokines including CCL20/MIP-3alpha display antimicrobial activity. J. Leukoc. Biol. 2003; 74(3): 448-55.

39. Tang YQ, Yeaman MR, Selsted ME. Antimicrobial peptides from human platelets. Infect Immun. 2002; 70(12):6524-6533.

40. Krauel K, Weber C, Brandt S, et al. Platelet factor 4 binding to lipid A of Gram-negative bacteria exposes PF4/ heparin-like epitopes. Blood. 2012; 120(16):3345-3352.

41. Tohidnezhad M, Varoga D, Podschun R, et al. Thrombocytes are effectors of the innate immune system releasing human beta defensin-3. Injury. 2011; 42(7):682-686.

42. Tohidnezhad M, Varoga D, Wruck CJ, et al., Platelets display potent antimicrobial activity and release human betadefensin 2. Platelets. 2012; 23(3):217-23.

43. Mantovani A, Garlanda C. Platelet-macrophage partnership in innate immunity and inflammation. Nat Immunol. 2013; 14(8):768-770.

44. Speth C, Löffler J, Krappmann S, et al. Platelets as immune cells in infectious diseases. Future Microbiol. 2013; 8(11):1431-1451.

45. Drago L, Bortolin M, Vassena C, et al. Antimicrobial activity of pure platelet-rich plasma against microorganisms isolated from oral cavity. BMC Microbiol. 2013; 13:47.

46. Ruggeri ZM, Mendolicchio GL. Interaction of von Willebrand factor with platelets and the vessel wall Hamostaseologie. 2015; 35(3):211-224.

47. McDonald B, Jenne CN, Zhuo L, et al. Kupffer cells and activation of endothelial TLR4 coordinate neutrophil adhesion within liver sinusoids during endotoxemi. Am. J. Physiol. Gastrointest. Liver. Physiol. 2013; 305(11):G797-806

48. McDonald B, Urrutia R, Yipp BG, et al. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe. 2012; 12(3):324333.

49. Clark SR, Ma AC, Tavener S, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 2007; 13:463–469.


Дополнительные файлы

Для цитирования: Серебряная Н.Б., Якуцени П.П., Климко Н.Н. РОЛЬ ТРОМБОЦИТОВ В ПАТОГЕНЕЗЕ БАКТЕРИАЛЬНЫХ ИНФЕКЦИЙ. Журнал инфектологии. 2017;9(4):5-13. https://doi.org/10.22625/2072-6732-2017-9-4-5-13

For citation: Serebryannaya N.B., Yakutseni P.P., Klimko N.N. РОЛЬ ТРОМБОЦИТОВ В ПАТОГЕНЕЗЕ БАКТЕРИАЛЬНЫХ ИНФЕКЦИЙ. Journal Infectology. 2017;9(4):5-13. (In Russ.) https://doi.org/10.22625/2072-6732-2017-9-4-5-13

Просмотров: 456

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2072-6732 (Print)
ISSN 2499-9865 (Online)