Preview

Journal Infectology

Advanced search

Peculiarities of genetic regulation of human susceptibility to viral infections

https://doi.org/10.22625/2072-6732-2025-17-4-35-50

Abstract

The functioning of the human genome plays a role in protecting the body from viral invasion. The body’s susceptibility to various viral diseases is determined not only by the functioning of the innate and adaptive immune systems but also by individual genomic differences. Mutations in the FUT2 gene region can exert a protective effect against norovirus gastroenteritis, but also increase the risk of developing and complicating other diseases. The molecular mechanism of interaction between OAS family genes and the innate immune system, as well as the characteristics of normal genomic polymorphism, influence the development and favorable outcome of viral diseases.
An analysis of information sources on the relationship between genomic processes and the course and outcome of viral diseases, as well as individual aspects of the influence of disease characteristics on these processes, was conducted as of July 2025. The following keywords were used in key electronic databases, including PubMed, Scopus, eLIBRARY, and Google Scholar: FUT, OAS, HDAC, epigenetics, immune resistance, viral diseases, and host immunity.
Several mechanisms of the influence of epigenetic processes on the course of diseases, as well as the possibilities for their therapeutic correction, are presented. Research into the fundamental aspects of the influence of genetic control mechanisms on susceptibility to viral infections will allow for new understanding of risk groups and mechanisms for disease prevention and treatment.

About the Authors

D. A. Verbenko
Federal Research Institute of Viral Infections ‘Virom’
Russian Federation

Ekaterinburg



V. A. Belyaev
Federal Research Institute of Viral Infections ‘Virom’
Russian Federation

Ekaterinburg



A. E. Panova
Federal Research Institute of Viral Infections ‘Virom’
Russian Federation

Ekaterinburg



M. A. Vashukova
National Medical Research Center named after V.A. Almazov; Infectious Diseases Hospital named after S.P. Botkin
Russian Federation

Saint-Petersburg



A. V. Semenov
Federal Research Institute of Viral Infections ‘Virom’
Russian Federation

Ekaterinburg



References

1. Ameen MT, French CR. Genetic Diseases of Fucosylation: Insights from Model Organisms. Genes. 2025; 16: 800. https://doi.org/10.3390/genes16070800

2. Ruvoen-Clouet N, Belliot G, Le Pendu J. Noroviruses and histo-blood groups: the impact of common host genetic polymorphisms on virus transmission and evolution. Reviews in Medical Virology. 2013;23(6):355–366. https://doi.org/10.1002/rmv.1757

3. Ramani S, Hu L, Venkataram Prasad BV, Estes MK. Diversity in Rotavirus-Host Glycan Interactions: A “Sweet” Spectrum. Cell Mol Gastroenterol Hepatol. 2016;2(3):263-273. https://doi.org/10.1016/j.jcmgh.2016.03.002

4. Hutson AM, Atmar RL, Graham DY, Estes MK. Norwalk Virus Infection and Disease Is Associated with ABO Histo–Blood Group Type. The Journal of Infectious Diseases. 2002;185(9):1335–1337. https://doi.org//10.1086/339883

5. Graziano VR, Wei J, Wilen CB. Norovirus Attachment and Entry. Viruses. 2019;11(6):495. https://doi.org/10.3390/v11060495

6. Patel MM, Widdowson MA, Glass RI, et al. Systematic Literature Review of Role of Noroviruses in Sporadic Gastroenteritis. Emerging Infectious Diseases. 2008;14(8):1224–1231. https://doi.org/10.3201/eid1408.071114

7. Bykov, R.O., Semenov, A.V., Starikova, P.K. i dr. Izuchenie aspektov formirovaniya geneticheski determinirovannoj rezistentnosti protiv vozbuditelya norovirusnoj infekcii posredstvom polimorfizma gena FUT2. Ehpidemiologiya i Vakcinoprofilaktika. R.O. Bykov, A.V. Semenov, P.K. Starikova // Ehpid. i Vakcinoprof. – 2023. – Т.22,№6. – С. 148 – 154. https://doi:10.31631/2073-3046-2023-22-6-148-154

8. Kaur P, Gupta M, Sagar V. FUT2 gene as a genetic susceptible marker of infectious diseases: A Review. International Journal of Molecular Epidemiology and Genetics. 2022;13(1):1-14; www.ncbi.nlm.nih.gov/pmc/articles/PMC9301175

9. Soejima M, Koda Y. Survey and characterization of nonfunctional alleles of FUT2 in a database. Sci Rep. 2021;11:3186. https://doi.org/10.1038/s41598-021-82895-w

10. Soejima M, Koda Y. Real-time PCR-based detection of the Alu-mediated deletion of FUT2 (sedel2). Leg Med (Tokyo) 2022;54:101986. https://doi.org/10.1016/j.legalmed.2021.101986 Epub 2021 Oct 30. PMID: 34736142.

11. Soejima M, Nakajima T, Fujihara J, et al. Genetic variation of FUT2 in Ovambos, Turks, and Mongolians. Transfusion. 2008;48(7):1423–1431. https://doi.org/10.1111/j.1537-2995.2008.01710

12. Iqbal MW, Ahmad M, Shahab M, Sun X, Baig MM, Yu K, Dawoud TM, Bourhia M, Dabiellil F, Zheng G, Yuan Q. Exploring deleterious non-synonymous SNPs in FUT2 gene, and implications for norovirus susceptibility and gut microbiota composition. Sci Rep. 2025;15(1):10395. https://doi.org/10.1038/s41598-025-92220-4

13. Thorven M, Grahn A, Hedlund KO, et al. A Homozygous Nonsense Mutation (428G–A) in the Human Secretor (FUT2) Gene Provides Resistance to Symptomatic Norovirus (GGII) Infections. Journal of Virology. 2005;79 (24):15351–15355. https://doi.org/10.1128/jvi.79.24.15351-15355.2005

14. Tan M, Jin M, Xie H, et al. Outbreak studies of a GII-3 and a GII-4 norovirus revealed an association between HBGA phenotypes and viral infection. Journal of Medical Virology. 2008;80(7):1296–1301. https://doi.org/10.1002/jmv.21200

15. Jin M, He Y, Li H, et al. Two Gastroenteritis Outbreaks Caused by GII Noroviruses: Host Susceptibility and HBGA Phenotypes. Kirk M, ed. PLoS ONE. 2013;8(3):e58605. https://doi.org/10.1371/journal.pone.0058605

16. Colston JM, Francois R, Pisanic N, Peñataro YP, McCormick BJJ, Olortegui MP et al. Effects of Child and Maternal Histo-Blood Group Antigen Status on Symptomatic and Asymptomatic Enteric Infections in Early Childhood. J Infect Dis. 2019;220(1):151-162. https://doi.org/10.1093/infdis/jiz072

17. Giampaoli O, Conta G, Calvani R and Miccheli A. Can the FUT2 Non-secretor Phenotype Associated With Gut Microbiota Increase the Children Susceptibility for Type 1 Diabetes? A Mini Review. Front. Nutr. 2020;7:606171. https://doi.org/10.3389/fnut.2020.606171

18. Trang NV, Vu HT, Le NT, et al. Association between Norovirus and Rotavirus Infection and Histo-Blood Group Antigen Types in Vietnamese Children. Journal of Clinical Microbiology. 2014;52(5):1366–1374. https://doi.org/10.1128/jcm.02927-13

19. Imbert-Marcille BM, Barbe L, Dupe M, et al. A FUT2 Gene Common Polymorphism Determines Resistance to Rotavirus A of the P[8] Genotype. The Journal of Infectious Diseases. 2013;209(8):1227–1230. https://doi.org/10.1093/infdis/jit655

20. Zhernakova DV, Wang D, Liu L et al. Host genetic regulation of human gut microbial structural variation. Nature 2024;625:813–821. https://doi.org/10.1038/s41586-023-06893-w

21. Fan R, Han X, Gong Y, He L, Xue Z, Yang Y et al. Alterations of Fucosyltransferase Genes and Fucosylated Glycans in Gastric Epithelial Cells Infected with Helicobacter pylori. Pathogens. 2021;10:168. https://doi.org/10.3390/pathogens10020168

22. Li Q, Guo W, Qian Y, et al. Protein O-fucosyltransferase 1 promotes PD-L1 stability to drive immune evasion and directs liver cancer to immunotherapy. Journal for ImmunoTherapy of Cancer. 2024;12:e008917. https://doi.org/10.1136/ jitc-2024-008917

23. Ahluwalia TS, Eliasen AU, Sevelsted A et al. FUT2–ABO epistasis increases the risk of early childhood asthma and Streptococcus pneumoniae respiratory illnesses. Nat Commun. 2020;11:6398. https://doi.org/10.1038/s41467-020-19814-6

24. Hovanessian AG, Justesen J. The human 2’-5’oligoadenylate synthetase family: unique interferon-inducible enzymes catalyzing 2’-5’ instead of 3’-5’ phosphodiester bond formation. Biochimie. 2007;89:779–788.

25. Anderson BR, Muramatsu H, Jha BK, Silverman RH, Weissman D, Karikó K. Nucleoside modifications in RNA limit activation of 2’-5’-oligoadenylate synthetase and increase resistance to cleavage by RNase L. Nucleic Acids Res. 2011;39(21):9329-38. https://doi.org/10.1093/nar/gkr586

26. Laudenbach BT. Processing of viral nucleic acids. Dissertation zur Erlangung des Doktorgrades der Fakult¨at f¨ur Chemie und Pharmazie der Ludwig-Maximilians. [Rottweil, Deutschland]:Universit¨at Munchen; 2018.

27. Choi UY, Kang JS, Hwang YS, et al. Oligoadenylate synthase-like (OASL) proteins: dual functions and associations with diseases. Exp. Mol. Med. 2015;47:e144.

28. Schwartz SL, Park EN, Vachon VK, Danzy S, Lowen AC, Conn GL. Human OAS1 activation is highly dependent on both RNA sequence and context of activating RNA motifs. Nucleic Acids Research. 2020;48(13):7520-531. https://doi.org/10.1093/nar/gkaa513

29. Melchjorsen J, Kristiansen H, Christiansen R, Rintahaka J, Matikainen S, Paludan SR et al. Differential Regulation of the OASL and OAS1 Genes in Response to Viral Infections. Journal of interferon and cytokine research. 2009;29(4):199-207.

30. Harioudh MK, Perez J, Chong Z, Nair S, So L, McCormick KD et al. Oligoadenylate synthetase 1 displays dual antiviral mechanisms in driving translational shutdown and protecting interferon production. Immunity. 2024;57(3):446-461.e7. https://doi.org/10.1016/j.immuni.2024.02.002

31. Banday AR, Stanifer ML, Florez-Vargas O, Onabajo OO, Papenberg BW, Zahoor MA, Mirabello L et al. Genetic regulation of OAS1 nonsense-mediated decay underlies association with COVID-19 hospitalization in patients of European and African ancestries. Nat Genet. 2022;54(8):1103-1116. https://doi.org/10.1038/s41588-022-01113-z

32. Iida K, Ajiro M, Nakano-Kobayashi A, Muramoto Y, Takenaga T, Denawa M, Kurosawa R, Noda T, Hagiwara M. Switching of OAS1 splicing isoforms overcomes SNP-derived vulnerability to SARS-CoV-2 infection. BMC Biol. 2025;23(1):60. https://doi.org/10.1186/s12915-025-02173-3

33. Gokul A, Arumugam T, Ramsuran V. Genetic Ethnic Differences in Human 20-50-Oligoadenylate Synthetase and Disease Associations: A Systematic Review. Genes 2023;14:527. https://doi.org/10.3390/genes14020527

34. García-Álvarez M, Berenguer J, Jiménez-Sousa MA, Pineda-Tenor D, Aldámiz-Echevarria T, Tejerina F et al. Mx1, OAS1 and OAS2 polymorphisms are associated with the severity of liver disease in HIV/HCV-coinfected patients: A crosssectional study. Sci. Rep. 2017;7:41516.

35. Darbeheshti F, Mahdiannasser M, Uhal BD, Ogino S, Gupta S, Rezaei N. Interindividual immunogenic variants: Susceptibility to coronavirus, respiratory syncytial virus and influenza virus. Rev. Med. Virol. 2021;31:e2234.

36. Zhao Y, Kang H, Ji Y, Chen X. Evaluate the relationship between polymorphisms of OAS1 gene and susceptibility to chronic hepatitis C with high resolution melting analysis. Clin. Exp. Med. 2013;13:171–176.

37. Lim JK, Lisco A, McDermott DH, Huynh L, Ward JM, Johnson B et al. Genetic variation in OAS1 is a risk factor for initial infection with West Nile virus in man. PLoS Pathog. 2009;5:e1000321.

38. El Awady MK, Anany MA, Esmat G, Zayed N, Tabll AA, Helmy A et al. Single nucleotide polymorphism at exon 7 splice acceptor site of OAS1 gene determines response of hepatitis C virus patients to interferon therapy. J. Gastroenterol. Hepatol. 2011;26:843–850.

39. Tan Y-X, Wang H, Lv H, Liu P-P, Xia S-G, Wang Y et al. Polymorphism of OAS2 rs739901 C/A involves the susceptibility to EV71 infection in Chinese children. Curr. Med. Sci. 2018;38:640–647.

40. Barkhash A, Babenko V, Kobzev V, Romaschenko A, Voevoda M. Polymorphism of 20-50-oligoadenylate synthetase (OAS) genes, associated with predisposition to severe forms of tick-borne encephalitis, in human populations of North Eurasia. Mol. Biol. 2010;44:875–882.

41. Barkhash AV, Kochneva GV, Chub EV, Mikhailova SV, Romaschenko AG. Association between polymorphisms in OAS2 and CD209 genes and predisposition to chronic hepatitis C in Russian population. Microbes Infect. 2014;16:445–449.

42. Anokhin VV, Bakhteeva LB, Khasanova GR, Khaiboullina SF, Martynova EV, Tillett RL e al. Previously unidentified single nucleotide polymorphisms in HIV/AIDS cases associate with clinical parameters and disease progression. BioMed Res. Int. 2016;2016:2742648.

43. Tan Y, Yang T, Liu P, Chen L, Tian Q, Guo Y et al. Association of the OAS3 rs1859330 G/A genetic polymorphism with severity of enterovirus-71 infection in Chinese Han children. Arch. Virol. 2017;162:2305–2313.

44. Su X, Yee LJ, Im K, Rhodes SL, Tang Y, Tong X et al. Association of single nucleotide polymorphisms in interferon signaling pathway genes and interferon-stimulated genes with the response to interferon therapy for chronic hepatitis C. J. Hepatol. 2008;49:184–191.

45. Liao X, Xie H, Li S, Ye H, Li S, Ren K et al. 2’, 5’-Oligoadenylate Synthetase 2 (OAS2) Inhibits Zika Virus Replication through Activation of Type Ι IFN Signaling Pathway. Viruses. 2020;12(4):418. https://doi.org/10.3390/v12040418

46. Zhu H, Shang X, Terada N, Liu C. STAT3 induces antihepatitis C viral activity in liver cells. Biochem. Biophys. Res. Commun. 2004;324:518–528.

47. Barkhash AV, Perelygin AA, Babenko VN, Myasnikova NG, Pilipenko PI, Romaschenko AG et al. Variability in the 20–50-oligoadenylate synthetase gene cluster is associated with human predisposition to tick-borne encephalitis virus-induced disease. J. Infect. Dis. 2010;202:1813–1818.

48. Gao LJ, He ZM, Li YY et al. Role of OAS gene family in COVID-19 induced heart failure. J Transl Med. 2023;21:212. https://doi.org/10.1186/s12967-023-04058-x

49. Torices S, Teglas T, Naranjo O, Fattakhov N, Frydlova K, Cabrera R et al. Occludin regulates HIV-1 infection by modulation of the interferon stimulated OAS gene family. Mol Neurobiol. 2023;60(9):4966-4982. https://doi.org/10.1007/s12035-023-03381-0

50. Yousfi FZE, Haroun AE, Nebhani C, Belayachi J, Askander O, Fahime EE et al. Prevalence of the protective OAS1 rs10774671-G allele against severe COVID-19 in Moroccans: implications for a North African Neanderthal connection. Arch Virol. 2024;169(5):109. https://doi.org/10.1007/s00705-024-06038-y

51. Shcherbakova AS, Kochetkov SN, Kozlov MV. How Histone Deacetylase 3 Controls Hepcidin Expression and Hepatitis C Virus Replication. Mol Biol 2023;57:412–423 https://doi.org/10.1134/S0026893323030081

52. Letchumanan P, Theva Das K. The role of genetic diversity, epigenetic regulation, and sex-based differences in HIV cure research: a comprehensive review. Epigenetics & Chromatin; 2025;18: 1; https://doi.org/10.1186/s13072-024-00564-4

53. Singh RK, Vangala R, Torne AS, Bose D and Robertson ES. Epigenetic and epitranscriptomic regulation during oncogenic γ-herpesvirus infection. Front. Microbiol. 2025;15:1484455. https://doi.org/10.3389/fmicb.2024.1484455

54. Pang Y, Zhou Y, Wang Y, Fang L, Xiao S. Lactate-lactylation-HSPA6 axis promotes PRRSV replication by impairing IFN-β production. J Virol. 2024;98(1):e0167023. https://doi.org/ 10.1128/jvi.01670-23

55. Ren J, Cheng S, Ren F, Gu H, Wu D, Yao X et al. Epigenetic regulation and its therapeutic potential in hepatitis B virus covalently closed circular DNA. Genes Dis. 2024;12(1):101215. https://doi.org/10.1016/j.gendis.2024.101215

56. Lefkowitz RB, Miller CM, Martinez-Caballero JD, Ramos I. Epigenetic Control of Innate Immunity: Consequences of Acute Respiratory Virus Infection. Viruses 2024;16:197. https://doi.org/10.3390/v16020197


Review

For citations:


Verbenko D.A., Belyaev V.A., Panova A.E., Vashukova M.A., Semenov A.V. Peculiarities of genetic regulation of human susceptibility to viral infections. Journal Infectology. 2025;17(4):35-50. (In Russ.) https://doi.org/10.22625/2072-6732-2025-17-4-35-50

Views: 113

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-6732 (Print)