Прогнозирование уровня смертности от инфекции Mpox в Африке с использованием гибридного подхода
https://doi.org/10.22625/2072-6732-2025-17-2-96-99
Abstract
Objective: The main objective of our work is to forecast the daily Infection Fatality Rate (IFR) index for Mpox, a disease that has posed significant challenges, particularly in African countries. Mpox has become a major public health concern due to its rapid spread and the strain it places on healthcare systems
Methods: In this paper, we use a hybrid approach to enhance the performance of traditional models. First, we apply the ARIMA model, which is more suitable for the task, and then we implement a noise reduction technique to further improve the results.
Results and discussions: We utilize four performance measures RMSE, MSE, MAE, and MAPE to evaluate the efficiency of our approach. By combining a denoising technique with ARIMA and integrating Singular Spectrum Analysis (SSA) with the ARIMA model, the SSA-ARIMA model demonstrates the best performance.
Conclusion: Forecasting the Infection Fatality Rate with an appropriate model provides a deeper understanding of this phenomenon, enabling authorities to effectively control and manage the risks associated with Mpox.
About the Author
Djillali SebaAlgeria
Djillali Seba – Faculty of exact sciences, Applied Mathematics Laboratory, Associate Professor
Bejaia
References
1. Basu, A. (2020). Estimating The Infection Fatality Rate Among Symptomatic COVID-19 Cases In The United States: Study estimates the COVID-19 infection fa- tality rate at the US county level. Health Affairs, 39(7), 1229-1236.
2. Bleichrodt, A., Dahal, S., Maloney, K., Casanova, L., Luo, R., Chowell, G. (2023). Real-time forecasting the trajectory of monkeypox outbreaks at the national and global levels, JulyOctober 2022. BMC medicine, 21(1), 19.
3. Box, G. E., Jenkins, G. M., Reinsel, G. C., Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley and Sons.
4. Chadaga, K., Prabhu, S., Sampathila, N., Nireshwalya, S., Katta, S. S., Tan, R. S., Acharya, U. R. (2023). Application of artificial intelligence techniques for monkeypox: a systematic review. Diagnostics, 13(5), 824.
5. Cuba, W. M., Huaman Alfaro, J. C., Iftikhar, H., LopezGonzales, J. L. (2024). Mod- eling and analysis of monkeypox outbreak using a new time series ensemble technique. Axioms, 13(8), 554.
6. Elshabrawy, M., Eid, M. M., Abdelhamid, A. A., ElKenawy, E. S. M., Ibrahim, A. (2023, October). Forecasting of Monkeypox Cases Using Optimized SARIMAX Based Model. In 2023 3rd International Conference on Electronic Engineering (ICEEM) (pp. 1-6). IEEE.
7. Frank, T. D. (2024). Mathematical Analysis of Four Fundamental Epidemiological Models for Monkeypox Disease Outbreaks: On the Pivotal Role of Human-Animal Order ParametersIn Memory of Hermann Haken. Mathematics, 12(20), 3215.
8. Golyandina, N., Nekrutkin, V., Zhigljavsky, A. A. (2001). Analysis of time series structure: SSA and related techniques. CRC press.
9. Grewelle, R. E., De Leo, G. A. (2020). Estimating the global infection fatality rate of COVID-19. MedRxiv, 2020-05.
10. Jena, D., Sridhar, S. B., Shareef, J., Talath, S., Ballal, S., Kumar, S., ... Sah, R. (2024). Time series modelling and forecasting of Monkeypox outbreak trends Africa’s in most affected countries. New Microbes and New Infections, 62, 101526.
11. Langat, A. K., Mwalili, S. M., Kazembe, L. N., Chepkonga, D., Kamwele, J. M. (2024). Modeling the spread of Mpox viral disease in African countries using a Bayesian hierarchical model. Commun. Math. Biol. Neurosci., 2024, Article-ID.
12. Long, B., Koyfman, A., Gottlieb, M., Liang, S. Y., Carius, B. M., Chavez, S., Brady, W. J. (2022). Monkeypox: A focused narrative review for emergency medicine clinicians. The American Journal of Emergency Medicine, 61, 34-43.
13. Munir, T., Khan, M., Cheema, S. A., Khan, F., Usmani, A., Nazir, M. (2024). Time series analysis and short-term forecasting of monkeypox outbreak trends in the 10 major affected countries. BMC Infectious Diseases, 24(1), 16.
14. Priyanka, T. M. C., Gowrisankar, A., Banerjee, S. (2024). Mpox outbreak: Time series analysis with multifractal and deep learning network. Chaos: An Interdisciplinary Journal of Nonlinear Science, 34(10).
15. Priyadarshini, I., Mohanty, P., Kumar, R., Taniar, D. (2023). Monkeypox outbreak analysis: an extensive study using machine learning models and time series analysis. Computers, 12(2), 36.
16. Rohrer, R., Wilson, A., Baumgartner, J., Burton, N., Ortiz, R. R., Dorsinville, A., ... Greene, S. K. (2025). Nowcasting to Monitor Real-Time Mpox Trends During the 2022 Outbreak in New York City: Evaluation Using Reportable Disease Data Stratified by Race or Ethnicity. Online Journal of Public Health Informatics, 17(1), e56495.
17. Seba, D., Belaide, K. (2024). Forecasting infection fatality rate of COVID-19, measuring the efficiency of several hybrid models. Russian Journal of Infection and Immunity.
18. Singh, V., Khan, S. A., Yadav, S. K., Akhter, Y. (2024). Modeling global monkey- pox infection spread data: a comparative study of time series regression and machine learning models. Current Microbiology, 81(1), 15.
19. Shishkin, A., Bleichrodt, A., Luo, R., Skums, P., Chowell, G., Kirpich, A. (2024). Short-Term Predictions of the Trajectory of Mpox in East Asian Countries, 2022-2023: A Comparative Study of Forecasting Approaches. Mathematics, 12(23), 3669.
20. Thornhill, J. P., Barkati, S., Walmsley, S., Rockstroh, J., Antinori, A., Harrison, L. B., ... Orkin, C. M. (2022). Monkeypox virus infection in humans across 16 countries- April-June 2022. New England Journal of Medicine, 387(8), 679-691.
21. Yasmin, F., Hassan, M. M., Zaman, S., Aung, S. T., Karim, A., Azam, S. (2022). A forecasting prognosis of the monkeypox outbreak based on a comprehensive statistical and regression analysis. Computation, 10(10), 177
Review
For citations:
Seba D. Прогнозирование уровня смертности от инфекции Mpox в Африке с использованием гибридного подхода. Journal Infectology. 2025;17(2):96-99. https://doi.org/10.22625/2072-6732-2025-17-2-96-99