Identification of rare single nucleotide polymorphisms in the genome of hospitalized COVID-19 patients
https://doi.org/10.22625/2072-6732-2024-16-4-68-77
Abstract
The aim of this controlled study was to identify polymorphisms in the genome of COVID19 patients associated with the frequency of hospitalization.
Materials and methods: Two groups of patients were formed: the main group – 56 patients with COVID19, hospitalized at least twice during the study period, and the control group – 107 patients for whom only one hospitalization with COVID19 was confirmed during the study period. Wholeexome sequencing of residual nasopharyngeal swabs from patients hospitalized with COVID19 was performed on the MGI platform, followed by bioinformatics analysis and gene enrichment analysis.
Result: For the first time, exome sequencing was performed from oropharyngeal swabs from 163 patients hospitalized with COVID19 using the MGI platform. In the main group, unique variants of genetic polymorphisms were identified, including six previously undescribed ones.
Conclusion: No genetic variants were statistically significantly associated with single or multiple hospitalizations of COVID19 patients in the study. Nasopharyngeal swabs can be used for whole exome sequencing. Further studies are needed to identify unique genetic variants responsible for susceptibility to infectious diseases. Nasopharyngeal swabs can be used for wholeexome sequencing. Further studies are needed to identify unique genetic variants responsible for susceptibility to infectious diseases.
About the Authors
A. A. PerederiyRussian Federation
Saint-Petersburg
Competing Interests:
none
A. B. Komissarov
Russian Federation
Saint-Petersburg
Competing Interests:
none
D. M. Danilenko
Russian Federation
Saint-Petersburg
Competing Interests:
none
E. V. Venev
Russian Federation
Saint-Petersburg
Competing Interests:
none
S. A. Konopleva
Russian Federation
Saint-Petersburg
Competing Interests:
none
M. Korzhanova
Russian Federation
Saint-Petersburg
Competing Interests:
none
M. M. Pisareva
Russian Federation
Saint-Petersburg
Competing Interests:
none
D. A. Gusev
Russian Federation
Saint-Petersburg
Competing Interests:
none
D. A. Lioznov
Russian Federation
Saint-Petersburg
Competing Interests:
none
References
1. The Human Genome Project. Nature milestones. 2021. https://www.nature.com/articles/d42859-020-00101-9
2. Brito AF, Semenova E, Dudas G, Hassler GW, Kalinich CC, et al. Global disparities in SARS-CoV-2 genomic surveillance. Nat Commun. 2022 Nov 16;13(1):7003. doi: 10.1038/s41467-022-33713-y.
3. The COVID-19 Host Genetics Initiative. The COVID-19 Host Genetics Initiative, a global initiative to elucidate the role of host genetic factors in susceptibility and severity of the SARSCoV-2 virus pandemic. Eu. J. Hum. Genet. 28, 715–718 (2020).
4. COVID-19 Host Genetics Initiative. Mapping the human genetic architecture of COVID-19. Nature 600, 472–477 (2021). https://doi.org/10.1038/s41586-021-03767-x
5. COVID-19 Host Genetics Initiative. A first update on mapping the human genetic architecture of COVID-19. Nature 608, E1–E10 (2022). https://doi.org/10.1038/s41586-022-04826-7
6. Kousathanas, A., Pairo-Castineira, E., Rawlik, K. et al. Whole-genome sequencing reveals host factors underlying critical COVID-19. Nature 607, 97–103 (2022). https://doi.org/10.1038/s41586-022-04576-6
7. Pan D, Sze S, Minhas JS, Bangash MN, Pareek N, Divall P, Williams CM, Oggioni MR, Squire IB, Nellums LB, Hanif W, Khunti K, Pareek M. The impact of ethnicity on clinical outcomes in COVID-19: A systematic review. EClinicalMedicine. 2020 Jun 3;23:100404. doi: 10.1016/j.eclinm.2020.100404
8. Vadgama N, Kreymerman A, Campbell J, Shamardina O, Brugger C, Research Consortium GE, Deaconescu AM, Lee RT, Penkett CJ, Gifford CA, Mercola M, Nasir J, Karakikes I. SARSCoV-2 Susceptibility and ACE2 Gene Variations Within Diverse Ethnic Backgrounds. Front Genet. 2022 Apr 27;13:888025. doi: 10.3389/fgene.2022.888025
9. Niemi, M.E.K., Daly, M.J. & Ganna, A. The human genetic epidemiology of COVID-19. Nat Rev Genet 23, 533–546 (2022). https://doi.org/10.1038/s41576-022-00478-5
10. Butler-Laporte G, Povysil G, Kosmicki JA, Cirulli ET, Drivas T, et al. Exome-wide association study to identify rare variants influencing COVID-19 outcomes: Results from the Host Genetics Initiative. PLoS Genet. 2022 Nov 3;18(11):e1010367. doi: 10.1371/journal.pgen.1010367
11. Mieszek SP, Polymeropoulos VM, Xiao C, Polymeropoulos CM, Polymeropoulos MH. Loss-of-function mutations in IFNAR2 in COVID-19 severe infection susceptibility. J Glob Antimicrob Resist. 2021 Sep;26:239-240. doi: 10.1016/j.jgar.2021.06.005.
12. Dieter C, de Almeida Brondani L, Lemos NE, Schaeffer AF, Zanotto C, et al. Polymorphisms in ACE1, TMPRSS2, IFIH1, IFNAR2, and TYK2 Genes Are Associated with Worse Clinical Outcomes in COVID-19. Genes (Basel). 2022 Dec 22;14(1):29. doi: 10.3390/genes14010029.
13. Fricke-Galindo I, Martínez-Morales A, Chávez-Galán L, Ocaña-Guzmán R, Buendía-Roldán I. et al. IFNAR2 relevance in the clinical outcome of individuals with severe COVID-19. Front Immunol. 2022 Jul 29;13:949413. doi: 10.3389/fimmu.2022.949413.
14. Abdelhafez M, Nasereddin A, Shamma OA, Abed R, Sinnokrot R. et al. Association of IFNAR2 rs2236757 and OAS3 rs10735079 Polymorphisms with Susceptibility to COVID-19 Infection and Severity in Palestine. Interdiscip Perspect Infect Dis. 2023 Sep 16;2023:9551163. doi: 10.1155/2023/9551163
15. Apal’ko S.V., Nostaeva A.V., Shimanskij V.S., Sushenceva N.N., Popov O.S. i dr. Poisk gennyh variantov, vliyayushchih na tyazhest’ techeniya COVID-19, na osnove rezul’tatov sekvenirovaniya klinicheskogo ekzoma // Geny i kletki. 2024. T. 19, № 2. S. 245–254.DOI: https://doi.org/10.17816/gc624810
16. Barbitoff YA, Khmelkova DN, Pomerantseva EA, Slepchenkov AV, Zubashenko NA et al. Expanding the Russian allele frequency reference via cross-laboratory data integration: insights from 7452 exome samples. Natl Sci Rev. 2024 Sep 14;11(10):nwae326. doi: 10.1093/nsr/nwae326
17. Andrews S. (2010). FastQC: a quality control tool for high throughput sequence data. Электронный ресурс. URL: http://www.bioinformatics.babraham.ac.uk/projects/fastqc. Дата доступа: 10.11.2024
18. Poplin R., ChangP.-C., Alexander D., Schwartz S., Colthurst T. et al. A universal SNP and small-indel variant caller using deep neural networks // Nature Biotechnology. – 2018. – V. 36. – P. 983–987. doi: https://doi.org/10.1038/nbt.4235
19. Rappaport N., Nativ N., Stelzer G., et al. MalaCards: an integrated compendium for diseases and their annotation // Database (Oxford) – 2013. – V.:bat018.doi:10.1093/database/ bat018
20. Azzarà A., Cassano I., Paccagnella E., et al. Genetic variants determine intrafamilial variability of SARS-CoV-2 clinical outcomes in 19 Italian families // PLoS One. -2022. – V.17. – P.e0275988. doi:10.1371/journal.pone.0275988.
21. Severe Covid-19 GWAS Group; Ellinghaus D, Degenhardt F, Bujanda L, Buti M, et al. Genomewide Association Study of Severe Covid-19 with Respiratory Failure // N. Engl. J. Med. – 2020. – V. 383. – P.1522-1534. doi: 10.1056/NEJMoa2020283.
22. Agrawal A., Balcı H., Hanspers K., Coort S.L., Martens M. et al. WikiPathways 2024: next generation pathway database // Nucleic Acids Research. – 2024. – V.52. – P. D679–D689. https://doi.org/10.1093/nar/gkad960
23. Shannon P., Markiel A., Ozier O., Baliga N. S., Wang J. T., et al. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504.
24. Garvin M.R., Alvarez C., Miller J., Prates E.T., Walker A.M., et al. A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm // Elife. – 2020. – V.9. – P. e59177. doi: 10.7554/ eLife.59177.
25. Bronk J.K., Kapadia C., Wu X., Chapman B.V., Wang R., et al. Feasibility of a novel non-invasive swab technique for serial whole-exome sequencing of cervical tumors during chemoradiation therapy // PLoS One. – 2022. – V. 17. – P.: e0274457. doi: 10.1371/journal.pone.0274457.
26. De Taeye B., Gils A., Declerck P.J. The story of the serpin plasminogen activator inhibitor 1: is there any need for another mutant? // Thromb. Haemost. – 2004. – V. 92. – P. 898-924. doi: 10.1160/TH04-05-0269
27. Landrum M.J., Lee J.M., Riley G.R., Jang W., Rubinstein W.S et al. ClinVar: public archive of relationships among sequence variation and human phenotype // Nucleic Acids Res. – 2014. – V. 42. – P. D980-5. doi: 10.1093/nar/gkt111.
28. Verma A., Minnier J., Wan E.S., Huffman J.E., Gao L., Joseph J., et al. A MUC5B Gene Polymorphism, rs35705950T, Confers Protective Effects Against COVID-19 Hospitalization but Not Severe Disease or Mortality // Am J Respir Crit Care Med. – 2022. – V. 206. – P.1220-1229. doi: 10.1164/rccm.202109-2166OC
29. García-Nieto P.E., Morrison A.J., Fraser, H.B. The somatic mutation landscape of the human body // Genome Biol. – 2019. – V.20. – P. 298. https://doi.org/10.1186/s13059019-1919-5.
30. Jiao P., Fan W., Ma X., Lin R., Zhao Y., et al. SARS-CoV-2 nonstructural protein 6 triggers endoplasmic reticulum stressinduced autophagy to degrade STING1. Autophagy. 2023 Dec;19(12):3113-3131. doi: 10.1080/15548627
31. Salamaikina S., Karnaushkina M., Korchagin V., Litvinova M., Mironov K, Akimkin V. TLRs Gene Polymorphisms Associated with Pneumonia before and during COVID-19 Pandemic // Diagnostics (Basel). – 2022. – V. 13. – P. 121. doi: 10.3390/diagnostics13010121
Review
For citations:
Perederiy A.A., Komissarov A.B., Danilenko D.M., Venev E.V., Konopleva S.A., Korzhanova M., Pisareva M.M., Gusev D.A., Lioznov D.A. Identification of rare single nucleotide polymorphisms in the genome of hospitalized COVID-19 patients. Journal Infectology. 2024;16(4):68-77. (In Russ.) https://doi.org/10.22625/2072-6732-2024-16-4-68-77