ГЕНЕТИЧЕСКИЙ ПОЛИМОРФИЗМ ИММУНОГЕННОЙ СИГНАЛЬНОЙ СИСТЕМЫ


https://doi.org/10.22625/2072-6732-2011-3-2-21-27

Полный текст:


Аннотация

Функциональные исследования выявили важное значение структурной целостности компонентов внутриклеточной сигнальной трансдукции системы врожденного иммунитета. Идентифицирована молекулярная структура ряда протеинов, участвующих в иммунном сигналинге, что способствует пониманию механизмов функционирования врожденного иммунитета на молекулярном уровне. Полиморфизмы, изменяющие сигнальную трансдукцию в клеточных элементах врожденного иммунитета и влияющие на предрасположенность человека к различным инфекциям, являются еще одним доказательством роли генетического фона хозяина в патофизиологии инфекционных заболеваний или резистентности к ним. В лекции описаны полиморфизмы молекул, вовлеченных в иммуногенный сигналинг, которые ассоциированы с продукцией провоспалительных цитокинов и эффективностью иммунных реакций.


Об авторах

В. Н. Цыган
Военно-медицинская академия им. С.М. Кирова, Санкт-Петербург
Россия

начальник научно-исследовательского отдела Военно-медицинской академии им. С.М. Кирова, д.м.н., профессор, тел. +7-911-950-23-50



А. М. Иванов
Военно-медицинская академия им. С.М. Кирова, Санкт-Петербург
Россия

начальник отдела нанобиотехнологий НИЦ Военно-медицинской академии им. С.М. Кирова, д.м.н., профессор, тел. +7921-951-64-39



Т. А. Камилова
Военно-медицинская академия им. С.М. Кирова, Санкт-Петербург
Россия

старший научный сотрудник лаборатории молекулярно-генетических исследований отдела нанобиотехнологий НИЦ Военно-медицинской академии им. С.М. Кирова, к.б.н., тел. +7921-637-46-51



Е. А. Кожухова
Военно-медицинская академия им. С.М. Кирова, Санкт-Петербург
Россия

доцент кафедры инфекционных болезней Санкт-Петербургского государственного медицинского университета им. академика И.П. Павлова, к.м.н., тел.+7-905-221-05-98



Н. Н. Мурашкин
Военно-медицинская академия им. С.М. Кирова, Санкт-Петербург
Россия

заведующий детским отделением ГУЗ «Клинический кожно-венерологический диспансер» департамента здравоохранения Краснодарского края, к.м.н., тел.+7-918-495-11-22



Н. В. Цыган
Военно-медицинская академия им. С.М. Кирова, Санкт-Петербург
Россия

преподаватель кафедры нервных болезней Военно-медицинской академии, к.м.н., тел.+7-921-928-94-70



Список литературы

1. Akira, S. Pathogen recognition and innate immunity / S. Akira, S. Uematsu, O. Takeuchi // Cell. – 2006. – V. 124. –P. 783–801.

2. Artis, D. The intestinal epithelium: sensors to effectors in nematode infection / D. Artis, R.K. Grencis // Mucos. Immunol. – 2008. – V. 1, №4. – P. 252–262.

3. Baima, E.T. Novel insights into the cellular mechanismsof the anti-inflammatory effects of NF-[kappa]B essential modulator (NEMO) binding domain peptides / E.T. Baima [et al.] // J. Biol. Chem. – 2010. – V. 285. – P. 13498–13506.

4. Brandl, K. MyD88-mediated signals induce the bactericidal lectin RegIII gamma and protect mice against intestinal Listeria monocytogenes infection / K. Brandl [et al.] // J. Exp. Med. – 2007. – V. 204. – P. 1891–1900.

5. Burns, K. Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4 / K. Burns [et al.] // J. Exp. Med. – 2003. – V. 197. – P. 263–268.

6. Burns, K. Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor / K. Burns [et al.] // Nat. Cell Biol. – 2000. – V. 2, № 6. – P. 346–351.

7. Casanova, J.L. Genetic dissection of immunity to mycobacteria: the human model / J.L. Casanova, L. Abel // Annu. Rev. Immunol. – 2002. – V. 20. – P. 581–620.

8. Caws, M. The influence of host and bacterial genotype on the development of disseminated disease with Mycobacterium tuberculosis / M. Caws [et al.] // PLoS Pathog. – 2008. – V. 4, № 3. – P. e1000034.

9. Coban, C. Toll-like receptor 9 mediates innate immune activation by the ma-laria pigment hemozoin / C. Coban [et al.] // J. Exp. Med. – 2005. – V. 201, №1. – P. 19–25.

10. Dean, M. Balanced polymorphism selected by genetic versus infectious human disease / M. Dean, M. Carrington, S.J. O’Brien // Annu. Rev. Genom Hum. Ge-net. – 2002. – V. 3. – P. 263–292.

11. Dhiman, N. Associations between SNPs in toll-like receptors and related intracel-lular signaling molecules and immune responses to measles vaccine: preliminary results / N. Dhiman [et al.] // Vaccine. – 2008. – V. 26, № 14. –P. 1731–1736.

12. Didierlaurent, A. Tollip regulates proinflammatory responses to interleukin-1 and lipopolysaccharide /A. Didierlaurent [et al.] // Mol. Cell Biol. – 2006. – V. 26. – P. 735–742.

13. Dunne, A. Structural complementarity of Toll /interleukin-1 receptor domains in Toll-like receptors and the adaptors Mal and MyD88 / A. Dunne [et al.] // J. Bi-ol. Chem. – 2003. – V. 278. – P. 41443–41451.

14. Fellay, J. Host genetics: fine-tuning innate signaling /J. Fellay, D.B. Goldstein // Curr. Biol. – 2007. – V. 17, № 13. –P. R516–R518.

15. Guay, H.M. MyD88 is required for the formation of longterm humoral immu-nity to virus infection H.M. Guay [et al.] //J. Immunol. – 2007. – V. 178, № 8. – P. 5124–5131.

16. Hamann, L. Low frequency of the TIRAP S180L polymorphism in Africa, and its potential role in malaria, sepsis, and leprosy / L. Hamann [et al.] // BMC Med. Genet. –2009. – V. 10. – P. 65.

17. Hawn, T.R. A polymorphism in Toll-interleukin 1 receptor domain containing adaptor protein is associated with susceptibility to meningeal tuberculosis / T.R. Hawn [et al.] // J. Infect. Dis. – 2006. – V. 194. – P. 1127–1134.

18. Higashimoto, T. Regulation of I(kappa)B kinase complex by phosphorylation of (gamma)-binding domain of I(kappa)B kinase (beta) by Polo-like kinase 1 / T. Higashimoto [et al.] // J. Biol. Chem. – 2008. – V. 283, № 51. – P. 35354– 35367.

19. Hoarau, C. TLR9 activation induces normal neutrophil responses in a child with IRAK-4 deficiency: involvement of the direct PI3K pathway / C. Hoarau [et al.] // J. Immunol. – 2007. – V. 179, № 7. – P. 4754–4765.

20. Janssen, R. Genetic susceptibility to respiratory syncytial virus bronchiolitis is predominantly associated with innate immune genes / R. Janssen [et al.] // J. In-fect. Dis. – 2007. –V. 196. – P. 826–834.

21. Khor, C.C. A Mal functional variant is associated with protection against inva-sive pneumococcal disease, bacteremia, malaria and tuberculosis / C.C. Khor [et al.] // Nat. Genet. –2007. – V. 39. – P. 523–528.

22. Kimman, T.G. Association of interacting genes in the Toll-like receptor signal-ing pathway and the antibody response to pertussis vaccination / T.G. Kimman [et al.] // PLoS ONE. – 2008. – V. 3, № 11. – P. e3665.

23. Lammers, K.M. Combined carriership of TLR9 -1237C and CD14 -260T alleles enhances the risk of developing chronic relapsing pouchitis / K.M. Lammers [et al.] // World J. Gastroenterol. – 2005. – V. 11, № 46. – P. 7323–7329.

24. Lasker, M.V. Intracellular TLR signaling: a structural perspective on human disease / M.V. Lasker [et al.] //J. Immunol. – 2006. – V. 177, № 1. – P. 11–16.

25. Lebeis, S.L. TLR signaling mediated by MyD88 is required for a protective in-nate immune response by neutrophils to Citrobacter rodentium / S.L. Lebeis [et al.] // J. Immunol. – 2007. – V. 179. – P. 566–577.

26. Loiarro, M. Peptide-mediated interference of TIR domain dimerization in MyD88 inhibits interleukin-1-dependent activation of NF-κB / M. Loiarro [et al.] // J. Biol. Chem. – 2005. – V. 280. – P. 15809–15814.

27. Madge, L.A. Inhibiting proinflammatory NF-kappaB signaling using cell-penetrating NEMO binding domain peptides / L.A. Madge [et al.] // Methods Mol. Biol. – 2009. – V. 512. – P. 209–232.

28. Magnusson, M. Cutting edge: natural DNA repetitive extragenic sequences from Gram-negative pathogens strongly stimulate TLR91 / M. Magnusson [et al.] // J. Immunol. – 2007. – V. 179. – P. 31–35.

29. Medvedev, A.E. Cutting edge: expression of IL-1 receptor-associated kinase-4 (IRAK-4) proteins with mutations identified in a patient with recurrent bacterial infections alters normal IRAK-4 interaction with components of the IL-1 receptor complex / A.E. Medvedev [et al.] // J. Immunol. – 2005. – V. 174. – P. 6587–6591.

30. Nagpal, K. A TIR domain variant of MyD88 adapter-like (Mal)/TIRAP results in loss of MyD88 binding and reduced TLR2/TLR4 signaling / K. Nagpal [et al.] // J. Biol. Chem. – 2009. – V. 284, № 38. – P. 25742–25748.

31. Núñez, M.R. A dimer of the Toll-like receptor 4 cytoplasmic domain provides a specific scaffold for the recruitment of signalling adaptor proteins / M.R. Núñez [et al.] // PLoS One. – 2007. – V. 2, № 8. – P. e788.

32. Picard, C. Pyogenic bacterial infections in humans with IRAK-4 deficiency / C. Picard [et al.] // Science. – 2003. – V. 299. – P. 2076–2079.

33. Ronni, T.V. Common interaction surfaces of the Tolllike receptor 4 cytoplas-mic domain stimulate multiple nucleartargets / T.V. Ronni [et al.] // Mol. Cell. Biol. – 2003. –V. 23. – P. 2543–2555.

34. Spolarics, Z. The X-files of inflammation: cellular mosaicism of X-linked po-lymorphic genes and the female advantage in the host response to injury and in-fection /Z. Spolarics // Shock. – 2007. – V. 27, № 6. – P. 597–604.

35. Stack, J. Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence / J. Stack [et al.] // J. Exp. Med. – 2005. – V. 201. – P. 1007–1018.

36. Takeda, K. Toll-like receptors in innate immunity /K. Takeda, S. Akira // Int. Immunol. – 2005. – V. 17. – P. 1–14.

37. Tosh, K. Variants in the SP110 gene are associated with genetic susceptibility to tuberculosis in West Africa / K. Tosh [et al.] // Proc. Natl. Acad. Sci. USA. – 2006. – V. 103. – P. 10364–10368.

38. Weighardt, H. Type I IFN modulates host defense and late hyperinflammation in septic peritonitis / H. Weighardt [et al.] // J. Immunol. – 2006. – V. 177. – P. 5623–5630.

39. Weighardt, H. Role of Toll-like receptor responses for sepsis pathogenesis / H. Weighardt, B. Holzmann //Immunobiology. – 2007. – V 212, № 9–10. – P. 715– 722.

40. West, A.P. Recognition and signaling by toll-like receptors / A.P. West [et al.] // Annu. Rev. Cell Dev. Biol. –2006. – V. 22. – P. 409–437.


Дополнительные файлы

Для цитирования: Цыган В.Н., Иванов А.М., Камилова Т.А., Кожухова Е.А., Мурашкин Н.Н., Цыган Н.В. ГЕНЕТИЧЕСКИЙ ПОЛИМОРФИЗМ ИММУНОГЕННОЙ СИГНАЛЬНОЙ СИСТЕМЫ. Журнал инфектологии. 2011;3(2):21-27. https://doi.org/10.22625/2072-6732-2011-3-2-21-27

For citation: Tzygan V.N., Ivanov A.M., Kamilova T.A., Коjuhova E.A., Мurashkin N.N., Tsygan N.V. Genetic polymorphism of immunogenic signaling system. Journal Infectology. 2011;3(2):21-27. (In Russ.) https://doi.org/10.22625/2072-6732-2011-3-2-21-27

Просмотров: 341

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2072-6732 (Print)
ISSN 2499-9865 (Online)