Preview

Journal Infectology

Advanced search

Strategy of control for bacterial biofilm processes

https://doi.org/10.22625/2072-6732-2012-4-3-5-15

Abstract

Main directions of the modern search of the antibiofilm preparations aimed at adhesive bacterial reactions, control of QS-systems, influence over bis-(3’-5’)-cyclic dimeric guanosine monophosphate (cdi-GMP), and secretory bacterial processes are analysed. Approaches for biofilm dispersal and increasing the sensitivity of biofilm bacteria to antimicrobial drugs are discussed. It is underlined that the majority of inhibitor molecules were studied in vitro or in infected mice experiments. It is prognosed that in future there will appear medical preparations which will help for fighting bacterial biofilms preventing their development and spreading in the host organism.

About the Authors

A. N. Mayansky
Nizhny Novgorod State Medical Academy, Nizhny Novgorod
Russian Federation


I. V. Chebotar
Nizhny Novgorod State Medical Academy, Nizhny Novgorod
Russian Federation


References

1. Costerton, J.W. Bacterial bofilms: a common cause of persistence infections / J.W. Costerton, P.S. Stewart, E.P. Greenberg // Science. – 1999. – V. 284, № 5418. – Р. 1318–1322.

2. Романова, Ю.М. Бактериальные биопленки как естественная форма существования бактерий в окружающей среде и организме хозяина / Ю.М. Романова, А.Л. Гинцбург // Журн. микробиол. эпидемиол. иммунол. – 2011. – № 3. – С. 99–109.

3. Смирнова, Т.А. Структурно-функциоальная характеристика бактериальных биопленок / Т.А. Смирнова [и др.] // Микробиология. – 2010. – Т. 79, № 4. – С. 435– 446.

4. Маянский, А.Н. Psedomonas aerugnosa: характеристика биопленочного процесса / А.Н. Маянский [и др.] // Мол. ген. микробиол. вирусол. – 2012. – № 1. – С. 1–6.

5. Karatan, E. Signals, regulatory networks, and materials that build and break bacterial biofilms / E. Karatan, P. Watnick // Microbiol. Mol. Biol. Rev. – 2009. – V. 73, № 2. – P. 310–347.

6. Lenz, A.P. Localized gene expression in Pseudomonas auruginosa biofilms / A.P. Lenz [et al.] // Appl. Environ. Microbiol. – 2008. – V. 74, № 14. – P. 4463–4471.

7. Stewart, P.E. Physiological heterogeneity in bioflms /P.E. Stewart, M.J. Franklin // Nat. Rev. Microbiol. – 2008. –V. 6, № 3. – P. 199–210.

8. Wagner, V.E. Microarrray analysis of Pseudomonas auruginosa quorum-sensing regulons: effects of growth phase and environment / V.E. Wagner [et al.] // J. Bacteriol. – 2003. – V. 185, № 7. – P. 2080–2095.

9. Зигангирова, Н.А. Мишень специфический поиск антивирулентных препаратов для лечения хронических инфекций / Н.А. Зигангирова, А.Л. Гинцбург // Журн. микробиол. эпидемиол. иммунол. – 2011. – № 4. – С. 107–115.

10. Barczak, A.K. Productive steps toward an antimicrobial targeting virulence / A.K. Barczak, D.T. Hung // Curr. Opin. Microbiol. – 2009. – V. 12, № 5. – Р. 490–496.

11. Sintim, H.O. Paradigm shift in discovering next-generation anti-infective agents: targeting quorum sensing, c-di-GMP signaling and biofilm formation in bacteria with small molecules / H.O. Sintim [et al.] // Future Med. Chem. – 2010. – V. 2, № 6. – P. 1005–1035.

12. Hojby N. Antibiotic resistance of bacterial biofilms /N. Hojby [et al.] // Intern. J. Antimicrob. Agents. – 2010. – V. 35, № 4. – P. 322–332.

13. Льюс, К. Персистирующие клетки и загадка выживания биопленок / К. Льюс // Биохимия. – 2005. – Т. 70,№ 2. – С. 327–336.

14. Klemm, P. Prevention of bacterial adhesion / P. Klemm, R.M. Vejborg // Appl. Microbiol. Biotechnol. – 2010. – V. 88, № 2. – P. 451–459.

15. Giltner, C.L. The Pseudomonas auruginosa type IV pilin receptor binding domain functions as an adhesin for both biotic and abiotic surfaces / C.L. Giltner [et al.] // Mol. Microbiol. – 2006. – V. 59, № 4. – P. 1083–1096.

16. O’Toole, G.A. How Pseudomonas auruginosa regulates surface behaviors / G.A. O’Toole // Microbe. – 2008. – V. 3, № 2. – P. 65–71.

17. Valet, I. Biofilm formation in Pseudomonas auruginosa: fimbrial cup gene clusters are controlled by the transcriptional regulator MvaT / Valet I. [et al.] // J. Bacteriol. – 2004. – V. 186, № 9. – P. 2880–2890.

18. Tran, V.B. Dynamics of flagellum- and pilus-mediated association of Pseudomonas auruginosa with contact lens surfaces / V.B. Tran [et al.] // Appl. Environ. Microbiol. – 2011. – V. 77, № 11. – P. 3644–3652.

19. Cegelski, L. Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation / L. Cegelski [et al.] // Nat. Chem. Biol. – 2009. – V. 5, № 12. – P. 913–919.

20. Pinkner, J.S. Rationally designed small compounds inhibit pilus biogenesis in uropathogenic bacteria / J.S. Pinkner [et al.] // PNAS. – 2006. – V. 103, № 47. – P. 17897–17902.

21. Thomas, R. Common oligosaccharides moieties inhibit the adherence of typical and atypical respiratory pathogens /R. Thomas, T. Brooks // J. Med. Microbiol. – 2004. – V. 53, № 9. – P. 833–840.

22. Bryan, R. The effects of aerosolized dextran in a mouse model of Pseudomonas auruginosa pulmonary infection /R. Bryan [et al.] // J. Infect. Dis. – 1999. – V. 179, № 6. – P. 1449–1458.

23. Barghouthi, S. Inhibition by dextran of Pseudomonas auruginosa adherence to epithelial cells / S. Barghouthi, L.M. Guerdoud, D.P. Speert // Am. J. Respir. Crit. Care Med. – 1996. – V. 154, № 6. – P. 1788–1793.

24. Vejborg, R.M. Blocking of bacterial biofilm formation by fish protein coating / R.M. Vejborg, P. Klemm // Appl. Environ. Microbiol. – 2008. – V. 74, № 11. – P. 3551–3558.

25. Valle, J. Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide / J. Valle [et al.] // Proc. Natl. Acad. Sci. USA. – 2006. – V. 103, № 33. – P. 12558–12563.

26. Ramphal, R. Recognition of mucin components by Pseudomonas auruginosa / R. Ramphal, S.K. Arora // Glycoconjug. J. – 2001. – V. 18, № 9. – P. 709–713.

27. Diggle, S.P. The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas auruginosa / S.P. Diggle [et al.] // Environ. Microbiol. – 2006. – V. 8, № 6. – P. 1095– 1104.

28. Chemani, C. Role of LecA and LecB lectins in Pseudomonas auruginosa-in-duced lung injury and effect of carbohydrate ligands / C. Chemani [et al.] // Infect. Immun. – 2009. – V. 77, № 5. – P. 2065–2075.

29. Tielker, D. Pseudomonas auruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation / D. Tielker [et al.] // Microbiology. – 2005. – V. 151, № 5. – P. 1313–1323.

30. Von Bismarck, P. Successful treatment of Pseudomonas auruginosa respiratory tract infection with a sugar solution – a case report on a lectin based therapeutic principle / P. Von Bismarck, R. Schneppenheim, U. Schumacher // Klin. Pediatr. – 2001. – V. 213, № 5. – P. 285–287.

31. Zinger-Yosovich, K.D. Blocking of Pseudomonas auruginosa and Chromobacterium violaceum lectins by diverse mammalian milks / K.D. Zinger-Yosovich [et al.] // J. Dairy Sci. – 2010. – V. 93, № 2. – P. 473–482.

32. Borlee, B.R. Pseudomonas auruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix / B.R. Borlee [et al.] // Mol. Microbiol. – 2010. – V. 75, № 4. – P. 827–842.

33. Starkey, M. Pseudomonas auruginosa rugose small-colony variants have adaptations that likely promote persistence in the cystic fibrosis lung / M. Starkey [et al.] // J. Bacteriol. – 2009. – V. 191, № 11. – P. 3492–3503.

34. Kolodkin-Gal, I. D-aminoacids trigger biofilm disassembly / I. Kolodkin-Gal [et al.] // Science. – 2010. – V. 328, № 5978. – P. 627–629.

35. Bjarnsholt, T. Quorum sensing and virulence of Pseudomonas auruginosa during lung infection of cystic fibrosis patiens / T. Bjarnsholt [et al.] // PLoS One. – 2010. – V. 5, № 4. – P. e10115.

36. Ma, L. Assembly and development of the Pseudomonas auruginosa biofilm matrix / L. Ma [et al.] // PLoS Pathog. –2009. – V. 5, № 3. – P. e1000354.

37. Friedman, L. Two genetic loci produce distinct carbohydraterich structural components of the Pseudomonas auruginosa biofilm matrix / L. Friedman, R. Kolter // J. Bacteriol. – 2004. – V. 186, № 14. – P. 4457–4465.

38. Banin, E. Chelator-induced dispersal and killing of Pseudomonas auruginosa cells in a biofilm / E. Banin, K.M. Brady, E.P. Greenberg // Appl. Environ. Microbiol. – 2006. – V. 72, № 3. – P. 2064–2069.

39. Harrison, F. Siderophore production and biofilm formation as linked social traits / F. Harrison, A. Buckling // ISME. – 2009. – V. 3, № 5. – P. 632–634.

40. Tarr, P.I. Iha: a novel Escherichia coli O157:H7 adherence-conferring molecule encoded on a recently acquired chromosomal island of conserved structure / P.I. Tarr [et al.] // Infect. Immun. – 2000. – V. 68, № 3. – P. 1400–1407.

41. Hantke, K. Selection procedure for deregulated iron transport mutans (fur) in E. coli K12: fur not only affects iron metabolism / K. Hantke // Mol. Gen. Genet. – 1987. – V. 210, № 1. – P. 135–139.

42. Hancock, V. Abolition of biofilm formation in urinary tract E. coli and Klebsiella isolates by metal interference through competition for Fur / V. Hancock, M. Dahl, P. Klemm // Appl. Environ. Microbiol. – 2010. – V. 76, № 12. – P. 3836–3841.

43. Filloux, A. Protein secretion systems in Pseudomonas auruginosa: an essay on diversity, evolution, and function / A. Filloux // Front. Microbiol. – 2011. – V. 2, № 1. – P. 1–21.

44. Mikkelsen, H. Biofilms and type III secretion are not mutually exclusive in Pseudomonas auruginosa / H. Mikkelsen [et al.] // Microbiology. – 2009. – V. 155, № 3. – P. 687– 698.

45. Baron, C. Antivirulence drugs to target bacterial secretion systems / C. Baron // Curr. Opin. Microbiol. – 2010. – V. 13, № 1. – P. 100–105.

46. Keyser, P. Virulence blockers as alternatives to antibiotics: type III secretion inhibitors against gram-negative bacteria / P. Keyser, [et al.] // J. Intern. Med. – 2008. – V. 264, № 1. – P. 17–29.

47. De Kievit, T.R. Quorum sensing in Pseudomonas auruginosa biofilms / T.R. De Kievit // Environ. Microbiol. – 2009. – V. 11, № 2. – P. 279-–288.

48. Njoroge, J. Jamming bacterial communication: new approaches for the treatment of infectious diseases / J. Njoroge, V. Sperandio // EMBO Mol.Microbiol. – 2009. – V. 1, № 4. – P. 201–210.

49. Rasmussen, T.B. Quorum sensing inhibitors: a bargain of effects / T.B. Rasmussen, M. Givskov // Microbiology. – 2006. – V. 152, № 4. – P. 895–904.

50. Hentzer, M. Inhibition of quorum sensing in Pseudomonas auruginosa biofilm bacteria by a halogenated furanone compound / M. Hentzer [et al.] // Microbiology. – 2002. – V. 148, № 1. – P. 87–102.

51. Davies, D.G. The involvement of cell-to-cell signals in the development of a bacterial biofilm / D.G. Davies [et al.] //Science. – 1998. – V. 280, № 5361. – P. 295–298.

52. Schuster, M. Identification, timing, and signal specificity of Pseudomonas auruginosa quorum-controlled genes: a transcriptome analysis / M. Schuster [et al.] // J. Bacteriol. – 2003. – V. 185, № 7. – P. 2066–2079.

53. Lesic, B. Inhibitors of pathogen intercellular signals as selective antiinfective compounds / B. Lesic [et al.] // PLoS Pathogens. – 2007. – V. 3, № 9. – P. e126.

54. Davies, D.G. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms / D.G. Davies, C.N. Marques // J. Bacteriol. – 2009. – V. 191, № 5. – P. 1393–1403.

55. Ryan, R.P. Communication with a growing family: diffusible signal factor (DSF) signaling in bacteria / R.P. Ryan, J.M. Dow // Trends Microbiol. – 2011. – V. 19, № 3. – P. 145–152.

56. Dong, Y.H. Quorum sensing and quorum-quenching enzymes / Y.H. Dong, L.H. Zhang // J. Microbiol. – 2005. –V. 43. – P. 101–109.

57. Camps, J. Paraoxonases as potential antibiofilm agents: their relationship with quorum-sensing signals in gramnegative bacteria / J. Camps [et al.] // Antimicrob. Agents. Chemother. – 2011. – V. 55, №4. – P. 1325–1331.

58. Nalca, Y. Quorum-sensing antagonistic activities of azithromycin in Pseudomonas auruginosa PAO1:a global approach / Y. Nalca [et al.] // Antimicrob. Agents Chemother. – 2006. – V. 50, № 5. – P. 1680–1688.

59. Geske, G.D. Modulation of bacterial quorum sensing with synthetic ligands: systematic evaluation of N-acylated homoserine lactones in multiple species and new insights into their mechanisms of action / G.D. Geske [et al.] // J. Am. Chem. Soc. – 2007. – V. 129, № 44. – P. 13613–1325.

60. Smith, K.M. Library screening for synthetic agonists and an tagonists of a Pseudomonas auruginosa autoinducer /K.M. Smith, Y. Bu, H. Suga // Chem. Biol. – 2003. – V. 10, № 6. – P. 563–571.

61. Hentzer, M. Attenuation of Psedomonas aerugnosa virulence by quorum sensing inhibitors / M. Hentzer [et al.] //EMBO J. – 2003. – V. 22, № 15. – P. 3803–3815.

62. Hjelmgaard, T. Synthesis of furanone-based natural product analogues with quorum sensing antagonist activity / T. Hjelmgaard [et al.] // Bioorg. Med. Chem. – 2003. – V. 11, № 15. – P. 3261–3271.

63. Nithya, C. Marine bacterial isolates inhibit biofilm formation and disrupt mature biofilms of Pseudomonas auruginosa PAO1 / C. Nithya, M.F. Begum, S.K. Pandian //Appl. Microbiol. Biotechnol. – 2010. – V. 88, № 1. – P. 341– 358.

64. Mai-Prochnow A. Hydrogen peroxide linked to lysine oxidase activity facilitates biofilm differentiation and dispersal in several gram-negative bac teria / A. Mai-Prochnow [et al.] // J. Bacteriol. – 2008. – V. 190, № 15. – P. 5493–5501.

65. Skindersoe, M.E. Quorum sensing antagonism from marine organisms / M.E. Skindersoe [et al.] // Mar.

66. Biotechnol. – 2008. – V. 10, № 1. – P. 56–63.

67. Rasmussen, T.B. Identity and effects of quorum-sensing inhibitors produced by Penicillium species / T.B. Rasmussen [et al.] // Microbiology. – 2005. – V. 151, № 5. – P. 1325–1340.

68. Persson, T. Rational design and synthesis of new quorumsensing inhibitors derived from acylated homoserine lactones and natural products from garlic / T. Persson [et al.] // Org. Biomol. Chem. – 2005. – V. 3, № 2. – P. 253–262.

69. Teplitski, M. Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria / M. Teplitski, J.B. Robinson, W.D. Bauer // Mol. Plant. Microbe Interact. – 2000. – V. 13, № 6. – P. 637–648.

70. Bjarnsholt, T. Pseudomonas auruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent / T. Bjarnsholt [et al.] // Microbiology. – 2005. – V. 151, № 2. – P. 373–383.

71. Brackman, G. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo / G. Brackman [et al.] // Antimicrob. Agents Chemother. – 2011. – V. 55, № 6. – P. 2655–2661.

72. An, S. Modulation of Pseudomonas auruginosa biofilm dispersal by a cyclic-di-GMP phosphodiesterase with a putative hypoxia-sensing domain / S. An, J. Wu, L.H. Zhang // Appl. Environ. Microbiol. – 2010. – V. 76, № 24. – P. 8160–8173.

73. Landini, P. Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal / P. Landini [et al.] // Appl. Mic robiol. Biotechnol. – 2010. – V. 86, № 3. – P. 813–823.

74. Galperin, M.Y. Bacterial signal transduction network in a genomic perspective / M.Y. Galperin // Environ. Microbiol. – 2004. – V. 6, № 6. – P. 552–562.

75. Morgan, R. BdIA, a chemotaxis regulator essential for biofilm dispersion in Pseudomonas auruginosa / R. Morgan [et al.] // J. Bacteriol. – 2006. – V. 188, № 21. – P. 7335–7343.

76. Barraud, N. Nitric oxide signaling in Pseudomonas auruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal / N. Barraud [et al.] // J. Bacteriol. – 2009. – V. 191, № 23. – P. 7333–7342.

77. Harmsen, M. An update on Pseudomonas auruginosa biofilm formation, tolerance, and dispersal / M. Harmsen [et al.] // FEMS Immunol. Med. Microbiol. – 2010. – V. 59, № 3. – P. 253–268.

78. Borlee, B. Pseudomonas auruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix / B. Borlee [et al.] // Mol. Microbiol. – 2010. – V. 75, № 4. – Р. 827–842.

79. Ma, Q. Engineering a novel c-di-GMP-binding protein for biofilm dispersal / Q. Ma [et al.] // Environ. Microbiol. – 2011. – V. 13, №3. – P. 631–642.

80. Antoiani, D. Monitoring of diguanylate cyclase activity and of cyclic-di-GMP biosynthesis by whole-cell assays suitable for high-throughput screening of biofilm inhibitors / D. Antoiani [et al.] // Appl. Microbiol. Biotechnol. – 2010. – V. 85, № 4. – P. 1095–1104.

81. Attila, C. 5-Fluorouracil reduces biofilm formation in E. coli K-12 through global regulator AriR as an antivirulence compound / C. Attila, A. Ueda, T.K. Wood // Appl. Microbiol. Biotechnol. – 2009. – V. 82, № 3. – P. 525–533.

82. Ueda, A. Connecting quorum sensing,c-di-GMP, pel polysaccha- ride, and biofilm formation in Pseudomonas auruginosa through tyrosine phosphatase TpbA (PA3885) / A. Ueda, T.K. Wood // PLoS Pathog. – 2009. – V. 5, № 6. – P. e1000483.

83. Kaplan, J.B. Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses / J.B. Kaplan //J. Dent. Res. – 2010. – V. 89, № 3. – P. 205–218.

84. Tetz, G.V. Effect of DNase and antibiotics on biofilm characteristics / G.V. Tetz, N.K. Artemenko, V.V. Tetz // Antimicrob. Agents Chemother. – 2009. – V. 53, № 3. – P. 1204–1209.

85. Fuxman Bass, J.I. Extracellular DNA: a major proinflammatory component of Pseudomonas auruginosa biofilms /J.I. Fuxman Bass [et al.] // J. Immunol. – 2010. – V. 184, № 11. – P. 6386–6395

86. Flemming, H.C. The biofilm matrix / H.C. Flemming, J. Wingender // Nat. Rev. Microbiol. – 2010. – V. 8, № 9. – P. 623–633.

87. Itoh, Y. Depolymerization of beta-1,6-N-acetyl-D-glucosamine disrupts the integrity of diverse bacterial biofilms / Y. Itoh [et al.] // J. Bacteriol. – 2005. – V. 187, № 1. – P. 382–387.

88. Alkawash, M.A. Alginate lyase enhances antibiotic killing of mucoid Pseudomonas auruginosa in biofilms / M.A. Alkawash, J.S. Soothill, N.L. Schiller // APMIS. – 2006. – V. 114, № 2. – P. 131–138.

89. Степанова, Т.В. Разработка средств борьбы с биопленками: изучение воздействия полисахаридных лиаз на матрикс биопленок, образуемых Pseudomonas auruginosa и Burkholderia cenocepacia / Т.В. Степанова [и др.] // Мед. алфавит. Лаборатория. – 2010. – № 1. – С. 47–51.

90. Marti, M. Extracellular proteases inhibit protein-dependent biofilm formation in Staphylococcus aureus / M. Marti [et al.] // Microbes Infect. – 2010. – V. 12, № 1. – P. 55–64.

91. Zhao, T. N-acetylcysteine inhibit biofilms produced by Pseudomonas auruginosa / T. Zhao, Y. Liu // BMC Microbiol. – 2010. – V. 10. – P. 140–148.

92. Whitchurch, C.B. Extracellular DNA required for bacterial biofilm formation / C.B. Whitchurch [et al.] // Science. –2002. – V. 295, № 5559. – P. 1487–1490.

93. Nemoto, K. Effect of varidase (streptodornase) on biofilm formed by Pseudomonas auruginosa / K. Nemoto [et al.] // Chemotherapy. – 2003. – V. 49, № 3. – P. 121–125.

94. Romanowski, G. Adsorption of plasmid DNA to mineral surfaces and protection against DNase I / G. Romanowski, M.G. Lorenz, W. Wackernagel // Appl. Environ. Microbiol. – 1991. – V. 57, № 4. – P. 1057–1061.

95. Storz, G. Regulation by small RNAs in bacteria: expanding frontiers / G. Storz, J. Vogel, K.M. Wassarman // Mol. Cell. – 2011. – V. 43, № 6. – P. 880–891.


Review

For citations:


Mayansky A.N., Chebotar I.V. Strategy of control for bacterial biofilm processes. Journal Infectology. 2012;4(3):5-15. (In Russ.) https://doi.org/10.22625/2072-6732-2012-4-3-5-15

Views: 736


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-6732 (Print)