Preview

Журнал инфектологии

Расширенный поиск

СТРАТЕГИЯ УПРАВЛЕНИЯ БАКТЕРИАЛЬНЫМ БИОПЛЕНОЧНЫМ ПРОЦЕССОМ

https://doi.org/10.22625/2072-6732-2012-4-3-5-15

Полный текст:

Аннотация

Проанализированы основные направления современного поиска антибиопленочных препаратов, нацеленных на адгезивные реакции бактерий, управление QS-системами, воздействие на циклический димерный гуанозинмонофосфат (ц-ди-ГМФ), секреторные бактериальные процессы. Обсуждаются подходы, которые используются для отторжения биопленки и повышения чувствительности биопленочных бактерий к антимикробным средствам. Подчеркивается, что большинство ингибиторных молекул исследовалось in vitro или в опытах на инфицированных мышах. Прогнозируется появление медицинских препаратов, которые позволят бороться с бактериальными биопленками, предупреждая их развитие и распространение в организме хозяина.

Об авторах

А. Н. Маянский
Нижегородская государственная медицинская академия, Нижний Новгород
Россия

заведующий кафедрой микробиологии и иммунологии Нижегородской государственной медицинской академии Минздравсоцразвития РФ, д.м.н., профессор; тел. (831)465-50-58; (831)434-73-51



И. В. Чеботарь
Нижегородская государственная медицинская академия, Нижний Новгород
Россия

доцент кафедры микробиологии и иммунологии Нижегородской государственной медицинской академии Минздравсоцразвития РФ, к.м.н.; тел. (831)465-42-71; +7-903-607-70-54



Список литературы

1. Costerton, J.W. Bacterial bofilms: a common cause of persistence infections / J.W. Costerton, P.S. Stewart, E.P. Greenberg // Science. – 1999. – V. 284, № 5418. – Р. 1318–1322.

2. Романова, Ю.М. Бактериальные биопленки как естественная форма существования бактерий в окружающей среде и организме хозяина / Ю.М. Романова, А.Л. Гинцбург // Журн. микробиол. эпидемиол. иммунол. – 2011. – № 3. – С. 99–109.

3. Смирнова, Т.А. Структурно-функциоальная характеристика бактериальных биопленок / Т.А. Смирнова [и др.] // Микробиология. – 2010. – Т. 79, № 4. – С. 435– 446.

4. Маянский, А.Н. Psedomonas aerugnosa: характеристика биопленочного процесса / А.Н. Маянский [и др.] // Мол. ген. микробиол. вирусол. – 2012. – № 1. – С. 1–6.

5. Karatan, E. Signals, regulatory networks, and materials that build and break bacterial biofilms / E. Karatan, P. Watnick // Microbiol. Mol. Biol. Rev. – 2009. – V. 73, № 2. – P. 310–347.

6. Lenz, A.P. Localized gene expression in Pseudomonas auruginosa biofilms / A.P. Lenz [et al.] // Appl. Environ. Microbiol. – 2008. – V. 74, № 14. – P. 4463–4471.

7. Stewart, P.E. Physiological heterogeneity in bioflms /P.E. Stewart, M.J. Franklin // Nat. Rev. Microbiol. – 2008. –V. 6, № 3. – P. 199–210.

8. Wagner, V.E. Microarrray analysis of Pseudomonas auruginosa quorum-sensing regulons: effects of growth phase and environment / V.E. Wagner [et al.] // J. Bacteriol. – 2003. – V. 185, № 7. – P. 2080–2095.

9. Зигангирова, Н.А. Мишень специфический поиск антивирулентных препаратов для лечения хронических инфекций / Н.А. Зигангирова, А.Л. Гинцбург // Журн. микробиол. эпидемиол. иммунол. – 2011. – № 4. – С. 107–115.

10. Barczak, A.K. Productive steps toward an antimicrobial targeting virulence / A.K. Barczak, D.T. Hung // Curr. Opin. Microbiol. – 2009. – V. 12, № 5. – Р. 490–496.

11. Sintim, H.O. Paradigm shift in discovering next-generation anti-infective agents: targeting quorum sensing, c-di-GMP signaling and biofilm formation in bacteria with small molecules / H.O. Sintim [et al.] // Future Med. Chem. – 2010. – V. 2, № 6. – P. 1005–1035.

12. Hojby N. Antibiotic resistance of bacterial biofilms /N. Hojby [et al.] // Intern. J. Antimicrob. Agents. – 2010. – V. 35, № 4. – P. 322–332.

13. Льюс, К. Персистирующие клетки и загадка выживания биопленок / К. Льюс // Биохимия. – 2005. – Т. 70,№ 2. – С. 327–336.

14. Klemm, P. Prevention of bacterial adhesion / P. Klemm, R.M. Vejborg // Appl. Microbiol. Biotechnol. – 2010. – V. 88, № 2. – P. 451–459.

15. Giltner, C.L. The Pseudomonas auruginosa type IV pilin receptor binding domain functions as an adhesin for both biotic and abiotic surfaces / C.L. Giltner [et al.] // Mol. Microbiol. – 2006. – V. 59, № 4. – P. 1083–1096.

16. O’Toole, G.A. How Pseudomonas auruginosa regulates surface behaviors / G.A. O’Toole // Microbe. – 2008. – V. 3, № 2. – P. 65–71.

17. Valet, I. Biofilm formation in Pseudomonas auruginosa: fimbrial cup gene clusters are controlled by the transcriptional regulator MvaT / Valet I. [et al.] // J. Bacteriol. – 2004. – V. 186, № 9. – P. 2880–2890.

18. Tran, V.B. Dynamics of flagellum- and pilus-mediated association of Pseudomonas auruginosa with contact lens surfaces / V.B. Tran [et al.] // Appl. Environ. Microbiol. – 2011. – V. 77, № 11. – P. 3644–3652.

19. Cegelski, L. Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation / L. Cegelski [et al.] // Nat. Chem. Biol. – 2009. – V. 5, № 12. – P. 913–919.

20. Pinkner, J.S. Rationally designed small compounds inhibit pilus biogenesis in uropathogenic bacteria / J.S. Pinkner [et al.] // PNAS. – 2006. – V. 103, № 47. – P. 17897–17902.

21. Thomas, R. Common oligosaccharides moieties inhibit the adherence of typical and atypical respiratory pathogens /R. Thomas, T. Brooks // J. Med. Microbiol. – 2004. – V. 53, № 9. – P. 833–840.

22. Bryan, R. The effects of aerosolized dextran in a mouse model of Pseudomonas auruginosa pulmonary infection /R. Bryan [et al.] // J. Infect. Dis. – 1999. – V. 179, № 6. – P. 1449–1458.

23. Barghouthi, S. Inhibition by dextran of Pseudomonas auruginosa adherence to epithelial cells / S. Barghouthi, L.M. Guerdoud, D.P. Speert // Am. J. Respir. Crit. Care Med. – 1996. – V. 154, № 6. – P. 1788–1793.

24. Vejborg, R.M. Blocking of bacterial biofilm formation by fish protein coating / R.M. Vejborg, P. Klemm // Appl. Environ. Microbiol. – 2008. – V. 74, № 11. – P. 3551–3558.

25. Valle, J. Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide / J. Valle [et al.] // Proc. Natl. Acad. Sci. USA. – 2006. – V. 103, № 33. – P. 12558–12563.

26. Ramphal, R. Recognition of mucin components by Pseudomonas auruginosa / R. Ramphal, S.K. Arora // Glycoconjug. J. – 2001. – V. 18, № 9. – P. 709–713.

27. Diggle, S.P. The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas auruginosa / S.P. Diggle [et al.] // Environ. Microbiol. – 2006. – V. 8, № 6. – P. 1095– 1104.

28. Chemani, C. Role of LecA and LecB lectins in Pseudomonas auruginosa-in-duced lung injury and effect of carbohydrate ligands / C. Chemani [et al.] // Infect. Immun. – 2009. – V. 77, № 5. – P. 2065–2075.

29. Tielker, D. Pseudomonas auruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation / D. Tielker [et al.] // Microbiology. – 2005. – V. 151, № 5. – P. 1313–1323.

30. Von Bismarck, P. Successful treatment of Pseudomonas auruginosa respiratory tract infection with a sugar solution – a case report on a lectin based therapeutic principle / P. Von Bismarck, R. Schneppenheim, U. Schumacher // Klin. Pediatr. – 2001. – V. 213, № 5. – P. 285–287.

31. Zinger-Yosovich, K.D. Blocking of Pseudomonas auruginosa and Chromobacterium violaceum lectins by diverse mammalian milks / K.D. Zinger-Yosovich [et al.] // J. Dairy Sci. – 2010. – V. 93, № 2. – P. 473–482.

32. Borlee, B.R. Pseudomonas auruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix / B.R. Borlee [et al.] // Mol. Microbiol. – 2010. – V. 75, № 4. – P. 827–842.

33. Starkey, M. Pseudomonas auruginosa rugose small-colony variants have adaptations that likely promote persistence in the cystic fibrosis lung / M. Starkey [et al.] // J. Bacteriol. – 2009. – V. 191, № 11. – P. 3492–3503.

34. Kolodkin-Gal, I. D-aminoacids trigger biofilm disassembly / I. Kolodkin-Gal [et al.] // Science. – 2010. – V. 328, № 5978. – P. 627–629.

35. Bjarnsholt, T. Quorum sensing and virulence of Pseudomonas auruginosa during lung infection of cystic fibrosis patiens / T. Bjarnsholt [et al.] // PLoS One. – 2010. – V. 5, № 4. – P. e10115.

36. Ma, L. Assembly and development of the Pseudomonas auruginosa biofilm matrix / L. Ma [et al.] // PLoS Pathog. –2009. – V. 5, № 3. – P. e1000354.

37. Friedman, L. Two genetic loci produce distinct carbohydraterich structural components of the Pseudomonas auruginosa biofilm matrix / L. Friedman, R. Kolter // J. Bacteriol. – 2004. – V. 186, № 14. – P. 4457–4465.

38. Banin, E. Chelator-induced dispersal and killing of Pseudomonas auruginosa cells in a biofilm / E. Banin, K.M. Brady, E.P. Greenberg // Appl. Environ. Microbiol. – 2006. – V. 72, № 3. – P. 2064–2069.

39. Harrison, F. Siderophore production and biofilm formation as linked social traits / F. Harrison, A. Buckling // ISME. – 2009. – V. 3, № 5. – P. 632–634.

40. Tarr, P.I. Iha: a novel Escherichia coli O157:H7 adherence-conferring molecule encoded on a recently acquired chromosomal island of conserved structure / P.I. Tarr [et al.] // Infect. Immun. – 2000. – V. 68, № 3. – P. 1400–1407.

41. Hantke, K. Selection procedure for deregulated iron transport mutans (fur) in E. coli K12: fur not only affects iron metabolism / K. Hantke // Mol. Gen. Genet. – 1987. – V. 210, № 1. – P. 135–139.

42. Hancock, V. Abolition of biofilm formation in urinary tract E. coli and Klebsiella isolates by metal interference through competition for Fur / V. Hancock, M. Dahl, P. Klemm // Appl. Environ. Microbiol. – 2010. – V. 76, № 12. – P. 3836–3841.

43. Filloux, A. Protein secretion systems in Pseudomonas auruginosa: an essay on diversity, evolution, and function / A. Filloux // Front. Microbiol. – 2011. – V. 2, № 1. – P. 1–21.

44. Mikkelsen, H. Biofilms and type III secretion are not mutually exclusive in Pseudomonas auruginosa / H. Mikkelsen [et al.] // Microbiology. – 2009. – V. 155, № 3. – P. 687– 698.

45. Baron, C. Antivirulence drugs to target bacterial secretion systems / C. Baron // Curr. Opin. Microbiol. – 2010. – V. 13, № 1. – P. 100–105.

46. Keyser, P. Virulence blockers as alternatives to antibiotics: type III secretion inhibitors against gram-negative bacteria / P. Keyser, [et al.] // J. Intern. Med. – 2008. – V. 264, № 1. – P. 17–29.

47. De Kievit, T.R. Quorum sensing in Pseudomonas auruginosa biofilms / T.R. De Kievit // Environ. Microbiol. – 2009. – V. 11, № 2. – P. 279-–288.

48. Njoroge, J. Jamming bacterial communication: new approaches for the treatment of infectious diseases / J. Njoroge, V. Sperandio // EMBO Mol.Microbiol. – 2009. – V. 1, № 4. – P. 201–210.

49. Rasmussen, T.B. Quorum sensing inhibitors: a bargain of effects / T.B. Rasmussen, M. Givskov // Microbiology. – 2006. – V. 152, № 4. – P. 895–904.

50. Hentzer, M. Inhibition of quorum sensing in Pseudomonas auruginosa biofilm bacteria by a halogenated furanone compound / M. Hentzer [et al.] // Microbiology. – 2002. – V. 148, № 1. – P. 87–102.

51. Davies, D.G. The involvement of cell-to-cell signals in the development of a bacterial biofilm / D.G. Davies [et al.] //Science. – 1998. – V. 280, № 5361. – P. 295–298.

52. Schuster, M. Identification, timing, and signal specificity of Pseudomonas auruginosa quorum-controlled genes: a transcriptome analysis / M. Schuster [et al.] // J. Bacteriol. – 2003. – V. 185, № 7. – P. 2066–2079.

53. Lesic, B. Inhibitors of pathogen intercellular signals as selective antiinfective compounds / B. Lesic [et al.] // PLoS Pathogens. – 2007. – V. 3, № 9. – P. e126.

54. Davies, D.G. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms / D.G. Davies, C.N. Marques // J. Bacteriol. – 2009. – V. 191, № 5. – P. 1393–1403.

55. Ryan, R.P. Communication with a growing family: diffusible signal factor (DSF) signaling in bacteria / R.P. Ryan, J.M. Dow // Trends Microbiol. – 2011. – V. 19, № 3. – P. 145–152.

56. Dong, Y.H. Quorum sensing and quorum-quenching enzymes / Y.H. Dong, L.H. Zhang // J. Microbiol. – 2005. –V. 43. – P. 101–109.

57. Camps, J. Paraoxonases as potential antibiofilm agents: their relationship with quorum-sensing signals in gramnegative bacteria / J. Camps [et al.] // Antimicrob. Agents. Chemother. – 2011. – V. 55, №4. – P. 1325–1331.

58. Nalca, Y. Quorum-sensing antagonistic activities of azithromycin in Pseudomonas auruginosa PAO1:a global approach / Y. Nalca [et al.] // Antimicrob. Agents Chemother. – 2006. – V. 50, № 5. – P. 1680–1688.

59. Geske, G.D. Modulation of bacterial quorum sensing with synthetic ligands: systematic evaluation of N-acylated homoserine lactones in multiple species and new insights into their mechanisms of action / G.D. Geske [et al.] // J. Am. Chem. Soc. – 2007. – V. 129, № 44. – P. 13613–1325.

60. Smith, K.M. Library screening for synthetic agonists and an tagonists of a Pseudomonas auruginosa autoinducer /K.M. Smith, Y. Bu, H. Suga // Chem. Biol. – 2003. – V. 10, № 6. – P. 563–571.

61. Hentzer, M. Attenuation of Psedomonas aerugnosa virulence by quorum sensing inhibitors / M. Hentzer [et al.] //EMBO J. – 2003. – V. 22, № 15. – P. 3803–3815.

62. Hjelmgaard, T. Synthesis of furanone-based natural product analogues with quorum sensing antagonist activity / T. Hjelmgaard [et al.] // Bioorg. Med. Chem. – 2003. – V. 11, № 15. – P. 3261–3271.

63. Nithya, C. Marine bacterial isolates inhibit biofilm formation and disrupt mature biofilms of Pseudomonas auruginosa PAO1 / C. Nithya, M.F. Begum, S.K. Pandian //Appl. Microbiol. Biotechnol. – 2010. – V. 88, № 1. – P. 341– 358.

64. Mai-Prochnow A. Hydrogen peroxide linked to lysine oxidase activity facilitates biofilm differentiation and dispersal in several gram-negative bac teria / A. Mai-Prochnow [et al.] // J. Bacteriol. – 2008. – V. 190, № 15. – P. 5493–5501.

65. Skindersoe, M.E. Quorum sensing antagonism from marine organisms / M.E. Skindersoe [et al.] // Mar.

66. Biotechnol. – 2008. – V. 10, № 1. – P. 56–63.

67. Rasmussen, T.B. Identity and effects of quorum-sensing inhibitors produced by Penicillium species / T.B. Rasmussen [et al.] // Microbiology. – 2005. – V. 151, № 5. – P. 1325–1340.

68. Persson, T. Rational design and synthesis of new quorumsensing inhibitors derived from acylated homoserine lactones and natural products from garlic / T. Persson [et al.] // Org. Biomol. Chem. – 2005. – V. 3, № 2. – P. 253–262.

69. Teplitski, M. Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria / M. Teplitski, J.B. Robinson, W.D. Bauer // Mol. Plant. Microbe Interact. – 2000. – V. 13, № 6. – P. 637–648.

70. Bjarnsholt, T. Pseudomonas auruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent / T. Bjarnsholt [et al.] // Microbiology. – 2005. – V. 151, № 2. – P. 373–383.

71. Brackman, G. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo / G. Brackman [et al.] // Antimicrob. Agents Chemother. – 2011. – V. 55, № 6. – P. 2655–2661.

72. An, S. Modulation of Pseudomonas auruginosa biofilm dispersal by a cyclic-di-GMP phosphodiesterase with a putative hypoxia-sensing domain / S. An, J. Wu, L.H. Zhang // Appl. Environ. Microbiol. – 2010. – V. 76, № 24. – P. 8160–8173.

73. Landini, P. Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal / P. Landini [et al.] // Appl. Mic robiol. Biotechnol. – 2010. – V. 86, № 3. – P. 813–823.

74. Galperin, M.Y. Bacterial signal transduction network in a genomic perspective / M.Y. Galperin // Environ. Microbiol. – 2004. – V. 6, № 6. – P. 552–562.

75. Morgan, R. BdIA, a chemotaxis regulator essential for biofilm dispersion in Pseudomonas auruginosa / R. Morgan [et al.] // J. Bacteriol. – 2006. – V. 188, № 21. – P. 7335–7343.

76. Barraud, N. Nitric oxide signaling in Pseudomonas auruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal / N. Barraud [et al.] // J. Bacteriol. – 2009. – V. 191, № 23. – P. 7333–7342.

77. Harmsen, M. An update on Pseudomonas auruginosa biofilm formation, tolerance, and dispersal / M. Harmsen [et al.] // FEMS Immunol. Med. Microbiol. – 2010. – V. 59, № 3. – P. 253–268.

78. Borlee, B. Pseudomonas auruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix / B. Borlee [et al.] // Mol. Microbiol. – 2010. – V. 75, № 4. – Р. 827–842.

79. Ma, Q. Engineering a novel c-di-GMP-binding protein for biofilm dispersal / Q. Ma [et al.] // Environ. Microbiol. – 2011. – V. 13, №3. – P. 631–642.

80. Antoiani, D. Monitoring of diguanylate cyclase activity and of cyclic-di-GMP biosynthesis by whole-cell assays suitable for high-throughput screening of biofilm inhibitors / D. Antoiani [et al.] // Appl. Microbiol. Biotechnol. – 2010. – V. 85, № 4. – P. 1095–1104.

81. Attila, C. 5-Fluorouracil reduces biofilm formation in E. coli K-12 through global regulator AriR as an antivirulence compound / C. Attila, A. Ueda, T.K. Wood // Appl. Microbiol. Biotechnol. – 2009. – V. 82, № 3. – P. 525–533.

82. Ueda, A. Connecting quorum sensing,c-di-GMP, pel polysaccha- ride, and biofilm formation in Pseudomonas auruginosa through tyrosine phosphatase TpbA (PA3885) / A. Ueda, T.K. Wood // PLoS Pathog. – 2009. – V. 5, № 6. – P. e1000483.

83. Kaplan, J.B. Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses / J.B. Kaplan //J. Dent. Res. – 2010. – V. 89, № 3. – P. 205–218.

84. Tetz, G.V. Effect of DNase and antibiotics on biofilm characteristics / G.V. Tetz, N.K. Artemenko, V.V. Tetz // Antimicrob. Agents Chemother. – 2009. – V. 53, № 3. – P. 1204–1209.

85. Fuxman Bass, J.I. Extracellular DNA: a major proinflammatory component of Pseudomonas auruginosa biofilms /J.I. Fuxman Bass [et al.] // J. Immunol. – 2010. – V. 184, № 11. – P. 6386–6395

86. Flemming, H.C. The biofilm matrix / H.C. Flemming, J. Wingender // Nat. Rev. Microbiol. – 2010. – V. 8, № 9. – P. 623–633.

87. Itoh, Y. Depolymerization of beta-1,6-N-acetyl-D-glucosamine disrupts the integrity of diverse bacterial biofilms / Y. Itoh [et al.] // J. Bacteriol. – 2005. – V. 187, № 1. – P. 382–387.

88. Alkawash, M.A. Alginate lyase enhances antibiotic killing of mucoid Pseudomonas auruginosa in biofilms / M.A. Alkawash, J.S. Soothill, N.L. Schiller // APMIS. – 2006. – V. 114, № 2. – P. 131–138.

89. Степанова, Т.В. Разработка средств борьбы с биопленками: изучение воздействия полисахаридных лиаз на матрикс биопленок, образуемых Pseudomonas auruginosa и Burkholderia cenocepacia / Т.В. Степанова [и др.] // Мед. алфавит. Лаборатория. – 2010. – № 1. – С. 47–51.

90. Marti, M. Extracellular proteases inhibit protein-dependent biofilm formation in Staphylococcus aureus / M. Marti [et al.] // Microbes Infect. – 2010. – V. 12, № 1. – P. 55–64.

91. Zhao, T. N-acetylcysteine inhibit biofilms produced by Pseudomonas auruginosa / T. Zhao, Y. Liu // BMC Microbiol. – 2010. – V. 10. – P. 140–148.

92. Whitchurch, C.B. Extracellular DNA required for bacterial biofilm formation / C.B. Whitchurch [et al.] // Science. –2002. – V. 295, № 5559. – P. 1487–1490.

93. Nemoto, K. Effect of varidase (streptodornase) on biofilm formed by Pseudomonas auruginosa / K. Nemoto [et al.] // Chemotherapy. – 2003. – V. 49, № 3. – P. 121–125.

94. Romanowski, G. Adsorption of plasmid DNA to mineral surfaces and protection against DNase I / G. Romanowski, M.G. Lorenz, W. Wackernagel // Appl. Environ. Microbiol. – 1991. – V. 57, № 4. – P. 1057–1061.

95. Storz, G. Regulation by small RNAs in bacteria: expanding frontiers / G. Storz, J. Vogel, K.M. Wassarman // Mol. Cell. – 2011. – V. 43, № 6. – P. 880–891.


Рецензия

Для цитирования:


Маянский А.Н., Чеботарь И.В. СТРАТЕГИЯ УПРАВЛЕНИЯ БАКТЕРИАЛЬНЫМ БИОПЛЕНОЧНЫМ ПРОЦЕССОМ. Журнал инфектологии. 2012;4(3):5-15. https://doi.org/10.22625/2072-6732-2012-4-3-5-15

For citation:


Mayansky A.N., Chebotar I.V. Strategy of control for bacterial biofilm processes. Journal Infectology. 2012;4(3):5-15. (In Russ.) https://doi.org/10.22625/2072-6732-2012-4-3-5-15

Просмотров: 496


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2072-6732 (Print)