Antigenic properties of sARs-CoV-2/human/RUs/nsk-FRCFtM-1/2020 coronavirus isolate from a patient in novosibirsk
https://doi.org/10.22625/2072-6732-2020-12-3-42-50
Abstract
Objective: isolation of coronavirus SARS-CoV-2 from clinical sample of patient with COVID-19 in Novosibirsk; obtaining a purified and inactivated viral antigen and study of its antigenic properties. Materials and methods: virus isolation was carried out in Vero cell culture from nasopharyngeal swab positive on SARS-CoV-2 RNA. The efficiency of SARSCoV-2 replication in cell culture was assessed on the appearance of cytopathic effect (CPE) and the presence of viral RNA in cultural medium with reverse transcription – polymerase chain reaction (RT-PCR). Purification, concentration and inactivation of the viral preparation were carried out according to standard methods. The purity of the purified preparation and the profile of viral proteins were determined by electrophoresis in 10% polyacrylamide gel (PAG) with the addition of sodium dodecyl sulfate (SDS). The presence and specificity of viral proteins were detected using COVID-19 convalescent’s sera with enzyme-linked immunosorbent assay (ELISA) and immunoblotting. Results: SARS-CoV-2/human/ RUS/Nsk-FRCFTM-1/2020 isolate was obtained after passage on Vero cells from a virus-containing clinical sample. A purified, concentrated, inactivated, whole-virion antigen was obtained. It contains three structural proteins: glycoprotein S (approximately 200 kDa), nucleoprotein N (48 kDa), and matrix protein M (20-25 kDa). All viral proteins were detected with serum antibodies of COVID-19 convalescents.
Conclusion: SARS-CoV-2 coronavirus can be isolated in Vero cell culture. The antigenic specificity of the three structural viral proteins (S, N, and M) is preserved in the purified inactivated viral preparation. The inactivated whole-virion antigen of SARS-CoV-2/human/RUS/Nsk-FRCFTM-1/2020 isolate can be used to study the antigenic immunomodulating properties of viral proteins, to obtain immune sera of laboratory animals, and also as a component of test systems for the detection of specific antibodies with ELISA and immunoblotting.
About the Authors
A. A. ChepurnovRussian Federation
Novosibirsk
K. A. Sharshov
Russian Federation
Novosibirsk
E. I. Kazachinskaya
Russian Federation
Novosibirsk
Yu. V. Kononova
Russian Federation
Novosibirsk
E. A. Kazachkova
Russian Federation
Novosibirsk
O. P. Khripko
Russian Federation
Novosibirsk
K. S. Yurchenko
Russian Federation
Novosibirsk
A. Yu. Alekseev
Russian Federation
Novosibirsk
M. I. Voevoda
Russian Federation
Novosibirsk
A. M. Shestopalov
Russian Federation
Novosibirsk
References
1. Virus Taxonomy: 2019 Release. EC 51, Berlin, Germany, July 2019. International website [Internet]. Available from: https://talk.ictvonline.org/taxonomy/ (10.06.2020).
2. Masters, P.S. The molecular biology of coronaviruses / P.S. Masters // Adv. Virus. Res. – 2006. – Vol. 66. – P. 193- 292. – doi: 10.1016/S0065-3527(06)66005-3.
3. Accessory proteins of SARS-CoV and other coronaviruses / D.X. Liu, T.S. Fung, K.K. Chong, et al. // Antiviral Res. – 2014. – Vol. 109. – P. 97-109. – doi: 10.1016/j.antiviral.2014.06.013.
4. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status / Y.R. Guo, Q.D. Cao, Z.S. Hong, et al. // Mil. Med. Res. – 2020. – Vol. 7. – N. 1. – P. 11. – doi: 10.1186/s40779-020-00240-0.
5. WHO Director-General’s opening remarks at the Mission briefing on COVID-19 – 12 March 2020. International website [Internet]. URL: https://www.who.int/ru/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-mission-briefing-on-covid-19---12-march-2020 (available 19.06.2020).
6. Virus Isolation from the First Patient with SARS-CoV-2 in Korea / W.B. Park, N.J. Kwon, S.J. Choi, et al. // J. Korean Med. Sci. – 2020 – Vol. 35. – N. 7. – e84. – doi: 10.3346/jkms.2020.35.e84.
7. Isolation of purified Ebola virus / A.A. Chepurnov, N.V. Merzlikin, E.I. Ryabchikova et al. // Vopr. Virusol. – 1994. – Vol. 39. – N. 6. – P. 254-257. [in Russian]
8. Razumov I.A. Antigenic differences in wild-type and guinea pig-adapted Ebola virus strains / I.A. Razumov, E.I. Kazachinskaia, A.A. Chepurnov // Vopr. Virusol. – 2010. – Vol. 55. – N. 6. – P. 35-38. [in Russian]
9. An interaction of Zika virus envelope fragments with serum antibodies derived from subjects after flavivirus infections / D.V. Shanshin, A.Yu. Bakulina, E.I. Kazachinskaia et al. // Russian Journal of Infection and Immunity = Infektsiya i immunitet – 2020. – Vol. 10. – N. 1. – P. 73–82. – doi: 10.15789/2220-7619-AIO-805. [in Russian]
10. Kazachinskaia, E.I. Strain of hybrid animal cells Mus musculus L. 5H6 – producer of monoclonal antibodies for detecting glycoprotein E of West Nile virus, 5H6 monoclonal antibodies produced by said strain of hybrid cells, and immunoenzymometric kit for detecting glycoprotein E of West Nile virus using said monoclonal antibodies / E.I. Kazachinskaia, I.A. Razumov, V.B. Loktev // Patent RU 2595429 C1, 27.08.2016. Application № 2015115059/10 at 21.04.2015. [in Russian]
11. Sturman L.S. I. Structural Proteins: Effects of Preparative Conditions on the Migration of Protein in Polyacrylamide Gels. / L.S. Sturman. // J. Virol. – 1977. – Vol. 77. – N. 2. – P. 637- 649. – doi: 10.1016/0042-6822(77)90488-3.
12. Dea S. Identification and Location of the Structural Glycoproteins of a Tissue Culture-Adapted Turkey Enteric Coronavirus. / S. Dea, S. Garzon, P. Tijssen // Arch Virol. – 1989. – Vol. 106. –N. 3-4. – P. 221-237. doi: 10.1007/BF01313955.
13. A complete sequence and comparative analysis of a SARS-associated virus (Isolate BJ01) / E.D. Qin, Q.Y. Zhu, M. Yu, et al. // Chin. Sci. Bull. – 2003. – N. 48. – P. 941-948. doi: 10.1007/BF03184203.
14. Rapid Development of an Inactivated Vaccine Candidate for SARS-CoV-19 / Q. Gao, L. Bao, M. Haiyan, et al. // Science. – 2020. – eabc1932. – doi: 10.1126/science.abc1932
15. Kuo L. Analyses of Coronavirus Assembly Interactions With Interspecies Membrane and Nucleocapsid Protein Chimeras. / L. Kuo, K.R. Hurst-Hess, C.A. Koetzner, et al. // J. Virol. – 2016. – Vol. 90. – N. 9. – P. 4357-4368. – doi: 10.1128/JVI.03212-15.
16. Liu X. Profile of Antibodies to the Nucleocapsid Protein of the Severe Acute Respiratory Syndrome (SARS)-associated Coronavirus in Probable SARS Patients. / X. Liu, Y. Shi, P. Li, et al. // Clin. Diagn. Lab. Immunol. – 2004. – Vol. 11. – N. 1. – P. 227-228. – doi: 10.1128/cdli.11.1.227-228.2004.
17. van der Hoek L. Human coronaviruses: what do they cause? / L. van der Hoek // Antivir. Ther. – 2007. – Vol. 12. – N. 4. – Pt. B. – P. 651-658.
18. SARS and MERS: recent insights into emerging coronaviruses / E. de Wit, N. van Doremalen, D. Falzarano, et al. // Nat. Rev. Microbiol. – 2016. – Vol. 14. – N. 8. P. 523-534. – doi: 10.1038/nrmicro.2016.81.
19. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor / M. Hoffmann, H. Kleine-Weber, S. Schroeder, et al. // Cell. – 2020. – Vol. 181. – N. 2. – P. 271-280. – e8. – doi: 10.1016/j.cell.2020.02.052.
20. Use of viral lysate antigen combined with recombinant protein in Western immunoblot assay as confirmatory test for serodiagnosis of severe acute respiratory syndrome / M. Guan, H.Y. Chen, P.H. Tan, et al. // Clin. Diagn. Lab. Immunol. – 2004 – Vol. 11. – N. 6. P. 1148–1153. – doi: 10.1128/ CDLI.11.6.1148-1153.2004.
21. Antibody responses to individual proteins of SARS coronavirus and their neutralization activities / M. Qiu, Y. Shi, Z. Guo, et al. // Microbes Infect./Institut Pasteur. – 2005. – Vol. 7. – N. (5-6). – P. 882-889. – doi: 10.1016/j.micinf.2005.02.006.
22. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study / K.K. To, O.T. Tsang, W.S. Leung, et al. // Lancet Infect. Dis. – 2020. – Vol. 20. – N. 5. – P. 565-574. – doi: 10.1016/S1473-3099(20)30196-1.
23. Profile of IgG and IgM antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) / J. Qu, C. Wu, X. Li, et al. // Clin. Infect. Dis. – 2020. – ciaa489. – doi: 10.1093/cid/ciaa489.
24. Serological responses in patients with severe acute respiratory syndrome coronavirus infection and cross-reactivity with human coronaviruses 229E, OC43, and NL63. / K.H. Chan, V.C. Cheng, P.C. Woo, et al. // Clin. Diagn. Lab. Immunol. – 2005. Vol. 12. – N. 11. – P. 1317-1321. – doi: 10.1128/CDLI.12.11.1317-1321.2005.
Review
For citations:
Chepurnov A.A., Sharshov K.A., Kazachinskaya E.I., Kononova Yu.V., Kazachkova E.A., Khripko O.P., Yurchenko K.S., Alekseev A.Yu., Voevoda M.I., Shestopalov A.M. Antigenic properties of sARs-CoV-2/human/RUs/nsk-FRCFtM-1/2020 coronavirus isolate from a patient in novosibirsk. Journal Infectology. 2020;12(3):42-50. (In Russ.) https://doi.org/10.22625/2072-6732-2020-12-3-42-50