Preview

Journal Infectology

Advanced search

serum 25(oH)D level in patients with CoVID-19

https://doi.org/10.22625/2072-6732-2020-12-3-21-27

Abstract

Recently, vitamin D deficiency is considered as a risk factor for the incidence and severity of new coronavirus infection.
The aim of this work was to evaluate the vitamin D level of patients with COVID-19 hospitalized with communityacquired pneumonia and compare the value of 25(OH)D in blood serum with the clinical manifestations of the disease.
Results. Included are 80 patients aged 18 to 94 years (mean age 53,2 ± 15,7 years), 43 (53,8%) men; with severe course – in 25 (31,3%) patients (12 males), and moderate – in 55 people (68,7%) (31 males). Half of the severely ill patients were obese, and among the deceased patients, the number of obese people was 61,5%, which was significantly higher than the discharged ones – 14,9% (p<0,001). Diabetes mellitus and cardiovascular diseases occurred with the same frequency, regardless of the severity of the disease. Analysis of the outcomes of coronavirus infection in these patients showed mortality in 52,0% of cases in severe patients. Serum 25(OH)D level ranged from 3,0 to 88,8 ng / ml (16,7 ± 12,7 ng / ml). It was found that in patients with severe course, the level of 25(OH)D blood was significantly lower (11.9 ± 6.4 ng / ml) and vitamin D deficiency was more common than in patients with moderate to severe course of the disease (18,5 ± 14,0 ng / ml, p = 0,027). The same pattern was revealed in patients with a fatal outcome, where the level of 25(OH)D was 10,8 ± 6,1 ng / ml, compared with this indicator in patients discharged from the hospital (17,8 ± 13,4 ng / ml) (p = 0,02).
Conclusions. Vitamin D deficiency and obesity have been found to increase the risk of severe course and death of coronavirus infection.

About the Authors

T. L. Karonova
National Medical Research Centre named after V.A. Almazov
Russian Federation
Saint-Petersburg


А. Т. Andreeva
National Medical Research Centre named after V.A. Almazov
Russian Federation
Saint-Petersburg


М. А. Vashukova
Clinical Infectious Hospital named after S.P. Botkin
Russian Federation
Saint-Petersburg


References

1. Karonova, T.L. Vitamin D as a factor in increasing immunity and reducing the risk of acute respiratory viral infections and COVID-19 / Т.L. Karonova, М.А. Vashukova, D.А. Gusev i dr. // Arterial hypertension. – 2020. – Vol. 26, № 3. – S.295- 303.

2. Baeke, F. Human T lymphocytes are direct targets of 1,25-dihydroxyvitamin D3 in the immune system / F. Baeke, H. Korf, L. Overbergh [et al.] // J Steroid Biochem Mol Biol. – 2010. – Vol. 121, № 1-2. – Р.221–227. doi: 10.1016/j.jsbmb.2010.03.037.

3. Hewison, M. Differential regulation of vitamin D receptor and its ligand in human monocyte-derived dendritic cells / M. Hewison, L. Freeman, S. Hughes [et al.] // J. Immunol. – 2003. – Vol. 170, № 11. – Р.5382–5390. doi:10.4049/jimmunol.170.11.5382.

4. Ginde, A. Association between serum 25-hydroxyvitamin D level and upper respiratory tract infection in the Third National Health and Nutrition Examination Survey / A. Ginde, J. Mansbach, C. Camargo // Arch. Intern. Med. – 2009. – Vol. 169, № 4. – P.384–390. doi: 10.1001/archinternmed.2008.560.

5. Rondanelli, M. Self-Care for Common Colds: The Pivotal Role of Vitamin D, Vitamin C, Zinc, and Echinacea in Three Main Immune Interactive Clusters (Physical Barriers, Innate and Adaptive Immunity) Involved during an Episode of Common Colds-Practical Advice on Dosages and on the Time to Take These Nutrients/Botanicals in order to Prevent or Treat Common Colds/ M. Rondanelli, A. Miccono, S. Lamburghini [et al.] // Evid. Based Complement. Alternat. Med. – 2018. – Vol. 5813095. doi: 10.1155/2018/5813095.

6. White, J. Regulation of intracrine production of 1,25-dihydroxyvitamin D and its role in innate immune defense against infection / J. White. // Arch. Biochem. Biophys. – 2012. – Vol. 523, № 1. – P.58–63. doi: 10.1016/j.abb.2011.11.006.

7. Liu, P.T. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response / P.T. Liu, S. Stenger, H. Li [et al.] // Science. – 2006. – Vol. 311, № 5768. – P.1770– 1773. doi: 10.1126/science.1123933

8. Adams, J.S. Vitamin d-directed rheostatic regulation of monocyte antibacterial responses / J.S. Adams, S. Ren, P.T. Liu [et al.] // J. Immunol. – 2009. – Vol. 82, № 7. – P.4289–4295. doi: 10.4049/jimmunol.0803736.

9. Laaksi, I. Vitamin D and respiratory infection in adults / I. Laaksi. // Proc. Nutr. Soc. 2012. Vol. 71, № 1. P.90–97. doi: 10.1017/S0029665111003351.

10. Campbell, P-A. Rapid response to Elisabeth Mahase E: Covid-19: what treatments are being investigated? / P.A. Campbell, M. Wu-Young, R.C. Lee. // BMJ. – 2020. – Vol. 368:m1252. doi: 10.1136/bmj.m1252. www.bmj.com/content/368/bmj.m1252/rapid-responses

11. Lemire JM, Adams JS, Kermani-Arab V. et al.1,25-Dihydroxyvitamin D3 suppresses human T helper/inducer lymphocyte activity in vitro. J. Immunol. – 1985. – Vol. 134, № 5. – P.3032–3035.

12. Cantorna MT, Snyder L, Lin YD. et al. Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients. – 2015. – Vol. 7, № 4. – P.3011–3021. doi: 10.3390/nu7043011.

13. Jeffery, L.E. 1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3 / L.E. Jeffery, F. Burke, M. Mura [et al.] // J. Immunol. – 2009. – Vol. 183, № 9. – P. 5458–5467. doi: 10.4049/jimmunol.0803217.

14. Yang, J. Effect of Vitamin D on ACE2 and Vitamin D receptor expression in rats with LPS-induced acute lung injury / J. Yang, H. Zhang, J. Xu. // Chinese J Emerg Med. – 2016. – Vol. 25. – P.1284-1289. DOI: 10.3760/cma.j.issn.1671-0282.2016.12.016

15. Vankadari, N. Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26 / N. Vankadari, J.A. Wilce. // Emerg Microbes Infect. – 2020. – Vol. 9, № 1. – P.601-604. doi:10.1080/22221751.2020.1739565

16. Vasarhelyi, B. Low vitamin D levels among patients at Semmelweis University: Retrospective analysis during a oneyear period / B. Vasarhelyi, A. Satori, F. Olajos. [et al.] // Orv. Hetil. – 2011. – Vol. 152, № 32. – P.1272–1277. doi: 10.1556/OH.2011.29187.

17. Huang, C. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China / C. Huang, Y. Wang, X. Li [et al.] // Lancet. – 2020. – Vol. 395, № 10223. – P.497- 506. doi: 10.1016/S0140-6736(20)30183-5.

18. Zhonghua, L.X.B.X.Z.Z. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China / L. X. B. X. Z. Z. Zhonghua. // 2020. – Vol. 41, № 2. – P.145–151. doi: 10.3760/cma.j.is sn.0254-6450.2020.02.003.

19. White, C. Coronavirus (COVID-19) related deaths by ethnic group, England and Wales: 2 March 2020 to 10 April 2020 / C.White, V. Nafilyan. // Office for National Statistics

20. Hope-Simpson, R.E. The role of season in the epidemiology of influenza / R.E. Hope-Simpson. // J. Hyg. – 1981. – Vol. 86, № 1. – P.35–47.

21. Cannell, J.J. Epidemic influenza and vitamin D / J.J. Cannell, R.Vieth, J.C. Umhau [et al.] // Epidemiol. Infect. – 2006. – Vol. 134, № 6. – P.1129–1140. doi: https://doi.org/10.1017/S0950268806007175.

22. Lavie, C.J. COVID-19 and obesity: links and risks / C.J. Lavie, F. Sanchis-Gomar, B.M. Henry [et al.] // Expert Rev Endocrinol Metab. – 2020. – Vol. 1-2. doi:10.1080/17446651.20 20.1767589

23. Hussain, A. COVID-19 and diabetes: Knowledge in progress / A. Hussain, B. Bhowmik, N.C. do Vale Moreira. // Diabetes Res Clin Pract. – 2020. – Vol. 162. – P.108142. doi:10.1016/j.diabres.2020.108142

24. Grant, W.B. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths / W.B. Grant, H. Lahore, S.L. McDonnell [et al.] // Nutrients. – 2020. – Vol. 12, № 4. – P.988. doi:10.3390/nu12040988

25. Alipio, M. Vitamin D Supplementation Could Possibly Improve Clinical Outcomes of Patients Infected with Coronavirus-2019 (COVID-19), 2020 / M. Alipio. // SSRN Electronic Journal. – 2020. – Available at SSRN:https://ssrn.com/abstract=3571484. doi:10.2139/ssrn.3571484

26. D’Avolio, A. 25-Hydroxyvitamin D Concentrations Are Lower in Patients with Positive PCR for SARS-CoV-2 / A. D’Avolio, V. Avataneo, A. Manca [et al.] // Nutrients. – 2020. – Vol. 12, №5. – P.1359. doi:10.3390/nu12051359

27. Karonova, T. Prevalence of Vitamin D deficiency in the North-West region of Russia: A cross-sectional study / T. Karonova, A. Andreeva, I. Nikitina [et al.] //J Steroid Biochem Mol Biol. – 2016. – Vol. 164. – P.230-234. doi:10.1016/j.jsbmb.2016.03.026

28. Holick, M.F. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline / M.F. Holick, N.C. Binkley, H.A. Bischoff-Ferrari [et al.] // J Clin Endocrinol Metab. – 2011. – Vol. 96, №7. – P.1911–30. doi:10.1210/jc.2011-0385

29. Pigarova, E.A. Russian Association of endocrinologists recommendations for diagnosis, treatment and prevention of vitamin D deficiency in adults / E.A. Pigarova, L.Ya. Rozhinskaya, Zh.E. Belaya [et al.] // Problems of endocrinology. – 2016. – Vol. 4. – P.60-84. doi:10.14341/probl201662460-84

30. Martineau, A.R. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and metaanalysis of individual participant data / A.R. Martineau, D.A. Jolliffe, R.L. Hooper [et al.] // BMJ. – 2017. – Vol. 356:i6583. doi: 10.1136/bmj.i6583.

31. Pham, H. Acute Respiratory Tract Infection and 25-Hydroxyvitamin D Concentration: A Systematic Review and MetaAnalysis / H. Pham, A. Rahman, A. Majidi [et al.] // Int. J. Environ. Res. Public Health. – 2019. – Vol. 16, № 17. – P.3020. doi:10.3390/ijerph16173020.

32. Wang, D. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China / D. Wang, B. Hu, C. Hu [et al.] // JAMA. – 2020. – doi: 10.1001/jama.2020.1585. 1

33. Zhou, F. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study / F. Zhou, T. Yu, R. Du [et al.] // Lancet. – 2020. – Vol. 395, № 10229. – P.1054-1062. doi: 10.1016/S0140-6736(20)30566-3.

34. Han, J.E. High dose vitamin D administration in ventilated intensive care unit patients: A Pilot Double Blind Randomized Controlled Trial / J.E. Han, J.L. Jones, V. Tangpricha [et al.] //J. Clin. Trans. Endocrinol. – 2016. – Vol. 4. – P.59-65. doi: 10.1016/j.jcte.2016.04.004.

35. Beard, J.A. Vitamin D and the anti-viral state / J.A. Beard, A. Bearden, R. Striker. // J. Clin. Virol. – 2011. – Vol. 50, № 3. – P.194–200. doi: 10.1016/j.jcv.2010.12.006.

36. Cohen-Lahav, M. Vitamin D decreases NFκB activity by increasing IκBα levels / M. Cohen-Lahav, S. Shany, D. Tobvin [et al.] // Nephrology Dialysis Transplantaton. – 2006. – Vol. 21, № 4. – P.889-897. doi:10.1093/ndt/gfi254

37. DeDiego ML, Nieto-Torres JL, Regla-Nava JA et al. Inhibition of NF-αB-mediated inflammation in severe acute respiratory syndrome coronavirus-infected mice increases survival. J Virol. – 2014. – Vol. 88, № 2. – P.913-924. doi:10.1128/JVI.02576-13


Review

For citations:


Karonova T.L., Andreeva А.Т., Vashukova М.А. serum 25(oH)D level in patients with CoVID-19. Journal Infectology. 2020;12(3):21-27. (In Russ.) https://doi.org/10.22625/2072-6732-2020-12-3-21-27

Views: 15214


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-6732 (Print)