Микробиота кишечника и аллергические заболевания


https://doi.org/10.22625/2072-6732-2020-12-2-19-29

Полный текст:


Аннотация

Увеличение числа аллергических заболеваний за последние несколько десятилетий связывают со структурными изменениями в составе кишечной микробиоты, которая играет значимую роль в становлении иммунной системы ребенка. В обзоре представлены данные о роли кишечной микробиоты, этапах её становления и факторах, влияющих на развитие иммунитета. Показано, что микробная колонизация на ранних этапах жизни подвержена влиянию различных факторов. Именно этот период жизни младенца является ключевым моментом для становления иммунной системы и кишечной колонизации микроорганизмами. Обеднение микробного разнообразия может служить причиной развития аллергических заболеваний. Принимая во внимание «гигиеническую гипотезу» возникновения аллергии и способность кишечной микробиоты влиять на иммунный ответ, высказывается суждение, что ранние манипуляции с  микробными сообществами кишечника смогут предложить новую стратегию для предотвращения аллергической сенсибилизации.


Об авторах

С. А. Мазурина
Научно-исследовательский институт вакцин и сывороток им. И.И. Мечникова
Россия

ведущий научный сотрудник лаборатории аллергодиагностики, к.б.н.

тел.: 8(495)917-20-26 

 Москва



В. Б. Гервазиева
Научно-исследовательский институт вакцин и сывороток им. И.И. Мечникова
Россия

заведующая лабораторией аллергодиагностики, д.м.н., профессор

тел.: 8(495)917-20-26   

Москва



В. В. Сверановская
Научно-исследовательский институт вакцин и сывороток им. И.И. Мечникова
Россия

ведущий научный сотрудник лаборатории аллергодиагностики, к.м.н.

тел.: 8(495)917-20-26  

Москва



Список литературы

1. Torow N, Hornef MW. The Neonatal Window of Opportunity: Setting the Stage for Life-Long Host-Microbial Interaction and Immune Homeostasis. J Immunol. 2017; 198(2): 557-563.

2. Fujimura KE, Lynch SV. Microbiota in allergy and asthma and the emerging relationship with the gut microbiome. Cell Host Microbe. 2015; 17(5): 592-602.

3. Kyburz A, Müller A. The Gastrointestinal Tract Microbiota and Allergic Diseases. Dig Dis.2016;34(3):230-43.

4. Rautava S, Luoto R, Salminen S, Isolauri E. Microbial contact during pregnancy, intestinal colonization and human disease. Nat Rev Gastroenterol Hepatol 2012; 9: 565–76.

5. Funkhouser LJ, Bordenstein SR. Mom knows best: the universality of maternal microbial transmission. PLoS Biol 2013; 11: e1001631.

6. Rautava S, Collado MC, Salminen S, Isolauri E. Probiotics modulate host-microbe interaction in the placenta and fetal gut: a randomized, double-blind, placebo-controlled trial. Neonatology 2012; 102: 178–84.

7. Fortner KB, Grotegut CA, Ransom CE, et al. Bacteria Localization and Chorion Thinning among Preterm Premature Rupture of Membranes. PLoS One. 2014; 9(1): e83338.

8. Gosalbes MJ, Llop S, Vallès Y, Moya A, Ballester F, Francino MP. Meconium microbiota types dominated by lactic acid or enteric bacteria are differentially associated with maternal eczema and respiratory problems in infants. Clin Exp Allergy 2013; 43: 198–211.

9. Prince AL, Antony KM, Ma J, Aagaard KM. The microbiome and development: a mother’s perspective. Semin Reprod Med. 2014; 32(1): 14-22.

10. Беляева, И.А. Кишечная микробиота у недоношенных детей – современное состояние проблемы / И.А. Беляева [и др.] // Педиатрическая фармакология. – 2015. – № 12 (3). – С. 296–303.

11. Hornef M, Penders J. Does a prenatal bacterial microbiota exist? Mucosal Immunol. 2017;10(3):598-601. doi: 10.1038/mi.2016.141.

12. Lombardi C, Savi E, Ridolo E, Passalacqua G, Canonica GW. Is allergic sensitization relevant in severe asthma? Which allergens may be culprit? World Allergy Organ J. 2017; 10(1): 2.

13. Douwes J, Cheng S, Travier N, Cohet C, Niesink A, McKenzie J et al. Farm exposure in utero may protect against asthma, hay fever and eczema. Eur Respir J 2008; 32: 603–11.

14. Cabrera-Rubio R, Collado MC, Laitinen K, Salminen S, Isolauri E, Mira A. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr 2012; 96: 544–51.

15. Isokpehi RD, Simmons SS, Johnson MO, Payton M. Genomic Evidence for Bacterial Determinants Influencing Obesity Development. Int J Environ Res Public Health. 2017;14(4). pii: E345.

16. Bager P, Simonsen J, Nielsen NM, Frisch M. Cesarean section and offspring’s risk of inflammatory bowel disease: a national cohort study. Inflamm. Bowel Dis. 2012; 18: 857–862.

17. Kolokotroni O, Middleton N, Gavatha M, Lamnisos D, Priftis KN, Yiallouros PK. Asthma and atopy in children born by caesarean section: effect modification by family history of allergies – a population based crosssectional study. BMC Pediatr 2012; 12:179.

18. Fallani M, Amarri S, Uusijarvi A, Adam R, Khanna S, Aguilera M et al. Determinants of the human infant intestinal microbiota after the introduction of first complementary foods in infant samples from five European centres. Microbiology 2011; 157: 1385–1392.

19. Sela DA, Mills DA. Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol 2010; 18: 298–307.

20. Gura T. Nature’s fi rst functional food. Science; 2014; 345 (6198), 747–749.

21. Lone JB, Koh WY, Parray HA, Paek WK, Lim J, Rather IA, Jan AT. Gut microbiome: Microflora association with obesity and obesity-related comorbidities. Microb Pathog.2018;124:266-271.

22. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 2010; 107: 14691-6.

23. Ilkka Hanski, Leena von Hertzen, Nanna Fyhrquist, Kaisa Koskinen, Kaisa Torppa, Tiina Laatikainen, Piia Karisola, et al. Environmental biodiversity, human microbiota, and allergy are interrelated. PNAS, 2012; 109(21): 8334-8339.

24. Stein M M, Hrusch C L, Gozdz J. Innate Immunity and Asthma Risk in Amish and Hutterite Farm Children.New England Journal o+f Medicine, 2016; 375(5):411-421

25. Tulic MK, Andrews D, Crook ML, Charles A, Tourigny MR, Moqbel R et al. Changes in thymic regulatory T-cell maturation from birth to puberty: differences in atopic children. J Allergy Clin Immunol 2012; 129: 199–206.

26. Kabat AM, Srinivasam N, Maloy KJ. Modulation of immune development and function by intestinal microbiota. Trends Immunol 2014; 35: 507-17.

27. Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science 2016; 352: 539-44.

28. Martin R, Nauta AJ, Ben Amor K, Knippels LM, Knol J, Garssen J. Early life: gut microbiota and immune development in infancy. Benef Microbes. 2010; 1(4): 367-82.

29. Cahenzli J., Y. Koller, M. Wyss, M.B. Geuking, K.D. McCoy. Intestinal microbial diversity during early-life colonization shapes long-term IgE levels. Cell Host Microbe 2013; 14: 559–570.

30. Tulic MK, Hodder M, Forsberg A et al. Differences in innate immune function between allergic and nonallergic children: new insights into immune ontogeny. J Allergy Clin Immunol 2011; 127: 470–8.

31. Garn H, Neves JF, Blumberg RS, Renz H. Effect of barrier microbes on organ-based inflammation. J Allergy Clin Immunol 2013; 131: 1465–78.

32. Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 2008; 453:620–5.

33. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013; 504: 446–50.

34. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly Y M et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013; 341: 569–73.

35. Bolotin A, de Wouters T. Genome Sequence of “Candidatus Arthromitus” sp. Strain SFB-Mouse-NL, a Commensal Bacterium with a Key Role in Postnatal Maturation of Gut Immune Functions? Genome Announc. 2014 Jul-Aug; 2(4): e00705-14.

36. Ericsson A.C., Hagan C.E., Davis D.J. Segmented Filamentous Bacteria: Commensal Microbes with Potential Effects on Research Comp Med. 2014 Apr; 64(2): 90–98.

37. Ladinsky MS, Araujo LP, Zhang X, Veltri J, Galan-Diez M, Soualhi S et al. Endocytosis of commensal antigens by intestinal epithelial cells regulates mucosal T cell homeostasis. Science 2019: 363(6431).

38. Shi Zh, Andrew T. Gewirtz, et al. Segmented Filamentous Bacteria Prevent and Cure Rotavirus Infection. Cell, 2019

39. Obata T, Goto Y, Kunisawa J, Sato S, Sakamoto M, Setoyama H, et al. Indigenous opportunistic bacteria inhabit mammalian gut-associated lymphoid tissues and share a mucosal antibody-mediated symbiosis. Proc Natl Acad Sci U S A. 2010; 107(16): 7419-24.

40. Mathias A, Duc M, Favre L, Benyacoub J, Blum S, Corthésy B. Potentiation of polarized intestinal Caco-2 cell responsiveness to probiotics complexed with secretory IgA. J Biol Chem 2010; 285: 33906–13.

41. Pickard JM, Chervonsky AV. Intestinal fucose as a mediator of host-microbe symbiosis. J Immunol 2015; 194: 5588-93.

42. Smits HH, Engering A, van der Kleij D, de Jong EC, Schipper K, van Capel TM, et al. Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. J Allergy Clin Immunol. 2005; 115(6): 1260-7.

43. Caballero S, Pamer EG. Microbiota-mediated inflammation and antimicrobial defense in the intestine. Annu Rev Immunol 2015; 33: 227-56.

44. Maslowski KM, Mackay CR. Diet, gut microbiota and immune responses.Nat Immunol 2011;12;5-9; Petersen C, Round JL. Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol 2014;16:1024-33.

45. Blum S, Alvarez S, Haller D, Perez P, Schiffrin EJ. Intestinal microflora and the interaction with immunocompetent cells. Antonie Van Leeuwenhoek. 1999; 76(1-4): 199-205.

46. McKenzie ANJ, Spits H, Ebert G. Innate lymphoid cells in inflammation and immunity. Immunity 2014; 41: 366-74.

47. Weng M., Walker W. A. The role of gut microbiota in programming the immune phenotype. J. Dev. Orig. Health Dis 2013; 4: 203–214.

48. Hrncir T, Stepankova R, Kozakova H, Hudcovic T, Tlaskalova-Hogenova H. Gut microbiota and lipopolysaccharide content of the diet influence development of regulatory T cells: studies in germ-free mice. BMC Immunol 2008; 9: 65-76.

49. Herbst T, Sichelstiel A, Schär C, Yadava K, Bürki K, Cahenzli J, et al. Dysregulation of allergic airway inflammation in the absence of microbial colonization. Am J Respir Crit Care Med 2011; 184: 198-205.

50. Rodriguez B, Prioult G, Bibiloni R, Nicolis I, Mercenier A, Butel Mj, et al. Germ-free status and altered caecal subdominant microbiota are associated with a high susceptibility to cowʼs milk allergy in mice. FEMS Microbiol Ecol 2011; 76: 133-144.

51. Reiprich M, Rudzok S, Schütze N, Simon JC, Lehmann I, Trump S et al. Inhibition of endotoxin-induced perinatal asthma protection by pollutants in an experimental mouse model. Allergy 2013; 68: 481–9.

52. Conrad ML, Ferstl R, Teich R, Brand S, Blümer N, Yildirim AO et al. Maternal TLR signaling is required for prenatal asthma protection by the nonpathogenic microbe Acinetobacter lwoffii F78. J Exp Med 2009; 206: 2869–77.

53. Blümer N, Sel S, Virna S, Patrascan CC, Zimmermann S, Herz U et al. Perinatal maternal application of Lactobacillus rhamnosus GG suppresses allergic airway inflammation in mouse offspring. Clin Exp Allergy 2007; 37: 348–57.

54. Magali Noval Rivas, PhD,a, Oliver T. Burton, et all. A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis.J Allergy Clin Immunol. 2013 Jan; 131(1): 10.1016/j.jaci.2012.10.026.

55. Oyama N, Sudo N, Sogawa H, Kubo C. Antibiotic use during infancy promotes a shift in the T(H)1/T(H)2 balance toward T(H)2-dominant immunity in mice. J Allergy Clin Immunol 2001; 107: 153-159.

56. Taye B, Enquselassie F, Tsegaye A, Amberbir A, Medhin G, Fogarty A, Robinson K, Davey G. Association between infection with Helicobacter pylori and atopy in young Ethiopian children: A longitudinal study. Clin Exp Allergy. 2017; 47 (10): 1299-1308. doi: 10.1111/cea.12995.

57. Ismail Ih, Oppedisano F, Joseph Sj, Boyle Rj, Licciardi Pv, Robins-Browne Rm, et al. Reduced gut microbial diversity in early life is associated with later development of eczema but not atopy in high-risk infants. Pediatr Allergy Immunol 2012; 23: 674-681.

58. Peters VBM, van de Steeg E, van Bilsen J, Meijerink M. Mechanisms and immunomodulatory properties of preand probiotics. Benef Microbes. 2019; 4:1-12. doi: 10.3920/BM2018.0066.

59. Plaza-Diaz J, Ruiz-Ojeda FJ , Gil-Campos M, Gil A. Mechanisms of Action of Probiotics. Adv Nutr. 2019; 10(1): S49-S66.

60. Wang HT, Anvari S, Anagnostou K. The Role of Probiotics in Preventing Allergic Disease. Children (Basel). 2019; 6(2). pii: E24. DOI: 10.3390/children6020024.

61. Rudi K, Storrø O, Oien T, Johnsen R. Modelling bacterial transmission in human allergen-specific IgE sensitization. Lett Appl Microbiol 2012; 54: 447-454.

62. Lodinova-Zadnikova, R., Prokesova, L., Kocourkova, I., Hrdy, J. and Zizka, J. Prevention of allergy in infants of allergic mothers by probiotic Escherichia coli. Int Arch Allergy Immunol 2010; 153: 201–206.

63. Troy, E.B. and Kasper, D.L. Beneficial effects of Bacteroides fragilis polysaccharides on the immune system. Front Biosci 2010; 156 25–34.


Дополнительные файлы

Для цитирования: Мазурина С.А., Гервазиева В.Б., Сверановская В.В. Микробиота кишечника и аллергические заболевания. Журнал инфектологии. 2020;12(2):19-29. https://doi.org/10.22625/2072-6732-2020-12-2-19-29

For citation: Mazurina S.A., Gervazieva V.B., Sveranovskaya V.V. Intestinal microbiota and allergic diseases. Journal Infectology. 2020;12(2):19-29. (In Russ.) https://doi.org/10.22625/2072-6732-2020-12-2-19-29

Просмотров: 160

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2072-6732 (Print)