MOLECULAR-GENETIC MECHANISMS OF PLASMODIUM FALCIPARUM VIRULENCE AND TROPICAL MALARIA PATHOGENESIS
https://doi.org/10.22625/2072-6732-2018-10-3-23-29
Abstract
There is introduced the analysis of molecular-genetic mechanisms of tropical malaria pathogenesis and P. falciparum virulence. It is shown, that pathogenesis of tropical malaria is associated with the properties of red blood cells membrane surface (RBCs or erythrocytes) that are infected by P. falciparum. There are «knobs structures» on membrane surface infected RBCs. Knobs structures contains a complex of P. falciparum proteins – PfEMP1 (Plasmodium falciparum erythrocyte membrane protein 1). PfEMP1 is associated with virulence of P. falciparum. Complex PfEMP1 has difficult polymorphous structure. Domains of PfEMP1 are able to associate with different cell receptors. Virulence`s individual components of the main factor are selectively sensitive to different tissues and organs. The severity of the clinical malaria infection course depends on the complex structure PfEMP1 of malaria parasites. Composition of polypeptide PfEMP1 is determined by var-complex. Nowadays there are 60 variants of var-complex. Regulation of gene expression, forming part of the var-complex, is carried out on a molecular-genetic level, cellular level, tissue level. Modern research in this area are aimed to explore genes polymorphism of the virulence`s main factor, to identify mechanism of its differential expression. Search of molecular – genetic markers is relevant to develop methods of gene diagnostic and malaria vaccine.
About the Authors
A. N. UskovRussian Federation
Saint-Petersburg
A. I. Soloviev
Russian Federation
Saint-Petersburg
V. Yu. Kravtsov
Russian Federation
Saint-Petersburg
R. V. Gudkov
Russian Federation
Saint-Petersburg
E. V. Kolomoets
Guinea
Conakry
A. E. Levkovskiy
Guinea
Conakry
References
1. Baranova, A.M. Malyariya: diagnostika, lechenie i profilaktika / A.M. Baranova // Infekcionny`e bolezni: Novosti. Mneniya. Obuchenie. – 2014,№1. – S.39-44.
2. Bronshtejn, A.M. Ot kolonial`noj i voennoj mediciny` k medicine tropicheskoj: doroga vremenny`x porazhenij i znamenity`x pobed / A.M. Bronshtejn, N.A. Maly`shev, Yu.V. Lobzin // E`pidemiologiya i infekcionny`e bolezni. – 2015,№ 2. – S.43-48.
3. Kondrashin, A. V. Tendencii v bor`be s malyariej v mire / A. V. Kondrashin, A.M. Baranova, L.F. Morozova, E.N Stepanova. // Med. parazitol. – 2011,№ 4. – S. 3-7.
4. Ly`senko, A.Ya. Malyariologiya / A.Ya. Ly`senko, A.V. Kondrashin, M.N. Ezhov / VOZ. – Kopengagen: 2003. – 510 s.
5. Morozov, E.N. Perspektivy` primeneniya metodov molekulyarnoj parazitologii v monitoringe za social`no znachimy`mi parazitozami: avtoref. dis. …d-ra biol. nauk / E.N. Morozov. – M.: Pervy`j MGMU, 2018. –31 s.
6. Sergiev, V.P. Modulyaciya virulentnosti Plasmodium falciparum kak faktor samoregulyacii parazitarnoj sistemy` malyarii / V.P. Sergiev, T.P. Sabgajda, A.V. Kondrashin // Medicinskaya parazitologiya i parazitarny`e bolezni. – 2000,№ 2. – S.47-53.
7. World malaria report 2017 / WHO, Geneva. – 2017. – 196 pр.
8. Rowe, J.A. Adhesion of Plasmodium falciparum-infected erythrocytes to human cells: molecular mechanisms and therapeutic implications / J.A Rowe // Expert Reviews in Molecular Medicine. – 2009. –Vol.11. – P.1-29.
9. David, P.H. Parasite sequestration in Plasmodium falciparum malaria: spleen and antibody modulation of cytoadherence of infected erythrocytes / P. H. David [at al.] // Proc. Natl. Acad. Sci. USA. – 1983. – Vol. 80,№ 16. – P. 5075-5079.
10. Warimwe, G.M. Serological Conservation of ParasiteInfected Erythrocytes Predicts Plasmodium falciparum Erythrocyte Membrane Protein 1 Gene Expression but Not Severity of Childhood Malaria / G.M. Warimwe [at al.] // Infection and Immunity. – 2016. – Vol.84,№5. – P. 1331-1335.
11. Baruch, D.I. Cloning the P.falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes / D.I. Baruch [at al.] // Cell. – 1995. – Vol.82,№1. – P.77–87.
12. Smith, J.D. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes / J.D. Smith [at al.] // Cell. – 1995. – Vol.82,№1. – P.101–110.
13. Kirchner, S. Recent advances in malaria genomics and epigenomics / S. Kirchner [at al.] // Genome Med. – 2016. – Vol.8,№1. – P.1-17.
14. Bechtsi, D.P. Genomics and epigenetics of sexual commitment in Plasmodium / D.P.Bechtsi, A.P.Waters // International Journal for Parasitology. – 2017. – Vol. 47. – P. 425- 434.
15. Pasternak, N.D. PfEMP1: An antigen that plays a key role in the pathogenicity and immune evasion of the malaria parasite Plasmodium falciparum / N.D. Pasternak, R. Dzikowski // The International Journal of Biochemistry & Cell Biology. – 2009. – Vol.41,№7. – P.1463–1466.
16. Smith, J.D. Classification of adhesive domains in the Plasmodium falciparum Erythrocyte Membrane Protein 1 family / J.D. Smith [at al.] // Molecular and Biochemical Parasitology. – 2000. – Vol.110,№2. – P.293–310.
17. Rug, M. The role of KAHRP domains in knob formation and cytoadherence of P.falciparum-infected human erythrocytes / M. Rug [at al.] // Blood. – 2006. – Vol.108,№1. – P.370–378.
18. Senczuk, A. M. Plasmodium falciparum erythrocyte membrane protein 1 functions as a ligand for P-selectin / A.M. Senczuk [at al.] / Blood. – 2001. – Vol.98,№10. – P.3132– 3135.
19. Turner, L. Severe malaria is associated with parasite binding to endothelial protein C receptor / L. Turner [at al.] // Nature. – 2013. – Vol.498,№7455. – P.502–505.
20. Angeletti, D. Binding of subdomains 1/2 of PfEMP1- DBL1α to heparan sulfate or heparin mediates Plasmodium falciparum resetting / D. Angeletti [at al.] // PLoS One. – 2015. – Vol.10,№3. – P.1-15.
21. Smith, J.D. Identification of a Plasmodium falciparum intercellular adhesion molecule-1 binding domain: A parasite adhesion trait implicated in cerebral malaria / J. D. Smith [at al.] // Proceedings of the National Academy of Sciences. – 2000. – Vol.97,№4. – P.1766–1771.
22. Kraemer, S.M. A family affair: var genes, PfEMP1 binding, and malaria disease / S.M. Kraemer, J.D Smith // Current Opinion in Microbiology. – 2006 – Vol.9,№4. – P.374–380.
23. Helms, G. Modeling cytoadhesion of Plasmodium falciparum infected erythrocytes and leukocytes — common principles and distinctive features / G. Helms [at al.] // FEBS Letters. – 2016. – Vol.590. –P. 1955–1971.
24. Lalchhandama, K. Plasmodium falciparum erythrocyte membrane protein 1 / K. Lalchhandama // WikiJournal of Medicine. – 2017. – Vol.4,№1. – P.1-8.
25. Michal, F. Designing a VAR2CSA-based vaccine to prevent placental malaria / F.Michal, E.D.Patrick // Vaccine. – 2015. -Vol.33,№1. – P.7483-7488.
26. Clinton, K.Y. Structural conservation despite huge sequence diversity allows EPCR binding by the PfEMP1 family implicated in severe childhood malaria / K.Y. Clinton [at al.] // Cell Host Microbe. – 2015. – Vol.17,№ 1. – P.118–129.
27. Bechtsi, D.P. Genomics and epigenetics of sexual commitment in Plasmodium / D.P. Bechtsi, A.P. Waters // International Journal for Parasitology. – 2017. – Vol.47. – P. 425– 434.
28. Chen, D.S. A Molecular Epidemiological Study of var Gene Diversity to Characterize the Reservoir of Plasmodium falciparum in Humans in Africa / D.S. Chen [at al.] // PLoS ONE. – 2011. – Vol.6. – P.1-12.
29. Mundwiler-Pachlatkoa, E. Maurer’s clefts, the enigma of Plasmodium falciparum / E. Mundwiler-Pachlatkoa, H.-P. Beck // PNAS. – 2013 – Vol. 110,№50. – P.19987–19994.
Review
For citations:
Uskov A.N., Soloviev A.I., Kravtsov V.Yu., Gudkov R.V., Kolomoets E.V., Levkovskiy A.E. MOLECULAR-GENETIC MECHANISMS OF PLASMODIUM FALCIPARUM VIRULENCE AND TROPICAL MALARIA PATHOGENESIS. Journal Infectology. 2018;10(3):23-29. (In Russ.) https://doi.org/10.22625/2072-6732-2018-10-3-23-29