Preview

Journal Infectology

Advanced search

Cytokines in pathogenesis of salmonella infection

https://doi.org/10.22625/2072-6732-2009-1-4-10-22

Abstract

The review examines the contemporary knowledge about immune protection mechanisms with Salmonella infection, and Salmonella ability to struggle against these mechanisms. Principal emphasis was made on
cytokine system reactions of innate and adaptive immunity, described in experimental and clinical researches.

About the Authors

G. F. Zheleznikova
Research Institute of Children’s Infections of Federal Medico-Biology Agency, St. Petersburg
Russian Federation


O. A. Volochova
Research Institute of Children’s Infections of Federal Medico-Biology Agency, St. Petersburg
Russian Federation


O. V. Tichomirova
Research Institute of Children’s Infections of Federal Medico-Biology Agency, St. Petersburg
Russian Federation


M. K. Bechtereva
Research Institute of Children’s Infections of Federal Medico-Biology Agency, St. Petersburg
Russian Federation


References

1. Поздеев О.К. Энтеробактерии: руководство для врачей / О.К. Поздеев, Р.В. Федоров. – М.: Гэотар Медиа, 2007. – 720 c.

2. Coburn B. Salmonella, the host and disease: a brief review / B. Coburn, G. Grassl, B. Finlay // Immunol. Cell. Biol. – 2007. – Vol. 85, № 2. – P. 112–118.

3. Layton A. Salmonella-induced enteritis: molecular pathogenesis and therapeutic implications / A. Layton, E. Galyov // Expert. Rev. Mol. Med. – 2007. – Vol. 9, № 18. – P. 1–17.

4. Sinha R. Sporadic enteric reactive arthritis and undifferentiated spondyloarthropathy: evidence for involvement of Salmonella typhimurium / R. Sinha, A. Aggarval, K. Prasad, R. Misra // J. Rheumatol. – 2003. – Vol. 30, № 1. – P. 105– 113.

5. Saarinen M. Invasion of Salmonella into human intestinal epithelial cells is modulated by HLA-B27 / M. Saarinen, P. Ekman, M. Ikeda et al. // Rheumatology (Oxford) – 2002. – Vol. 41, № 6. – P. 651–657.

6. Minami K. Cerebrospinal fluid cytokines in Salmonella urbana encephalopathy / K. Minami, T. Yanagawa, M. Okuda t al. // Tohoku J. Exp. Med. – 2004. – Vol. 203, № 2. – P. 129–132.

7. Sebastiani G. Host immune response to Salmonella enterica serovar Typhimurium infection in mice derived from wild strains / G. Sebastiani, V. Blais, V. Sancho et al. // Infect. Immun. – 2002. – Vol. 70, № 4. – P. 1997–2009.

8. Mittrücker H. Characterization of the murine T-lymphocyte response to Salmonella enterica serovar Typhimurium infection / H. Mittrücker, A. Köhler, S. Kaufmann // Infect. Immun. – 2002. – Vol. 70, № 1. – P. 199–203.

9. Fernandez-Cabezudo M. Evidence for the requirement for CD40-CD154 interactions in resistance to infections with attenuated Salmonella / M. Fernandez-Cabezudo, A. Ullah, R. Flavell, B. Al-Ramadi J. // Endotoxin Res. – 2005. – Vol. 11, № 6. – P. 395–399.

10. Brumme S. Impact of Salmonella typhimurium DT104 virulence factors invC and sseD on the onset, clinical course, colonization patterns and immune response of porcine salmonellosis / S. Brumme, T. Arnold, H. Sigmarsson et al. // Vet. Microbiol. – 2007. – Vol. 124, № 3–4. – P. 274– 285.

11. Cho W. Expression of inflammatory cytokines (TNF-α, IL-1, IL-6 and IL-8) in colon of pigs naturally infected with Salmonella typhimurium and S. choleraesuis / W. Cho, C. Chae // J. Vet. Med. Physiol. Pathol. Clin. Med. – 2003. – Vol. 50, № 10. – P. 484–487.

12. Hedges J. Mucosal lymphatic-derived γδT cells respond early to experimental Salmonella enterocolitis by increasing expression of IL-2Rα / J. Hedges, D. Buckner, K. Rask et al. // Cell. Immunol. – 2007. – Vol. 246, № 1. – P. 8–16.

13. Norimatsu M. Differential response of bovine monocyte-derived macrophages and dendritic cells to infection with Salmonella typhimurium in a low-dose model in vitro / M. Norimatsu, J. Harris, V. Chance et al. // Immunology – 2003. – Vol. 108, № 1. – P. 55–61.

14. Splíchal I. Early cytokine response of gnotobiotic piglets to Salmonella enterica serotype typhimurium / I. Splíchal, I. Trebichavský, Y. Muneta, Y. Mori // Vet. Res. – 2002. – Vol. 33, № 3. – P. 291–297.

15. Trebichavský I. Systemic and local cytokine response of young piglets to oral infection with almonella enterica serotype Typhimurium / I. Trebichavský, I. Splíchal, A. Splíchalová et al. // Folia Microbiol.(Praha) – 2003. – Vol. 48, № 3. – P. 403–407.

16. Beal R. Temporal dynamics of the cellular, humoral and cytokine responses in chickens during primary and secondary infection with Salmonella enterica serovar Typhimurium / R. Beal, C. Powers, P. Wigley et al. // Avian Pathol. – 2004. – Vol. 33, № 1. – P. 25–33.

17. Gerlach R. Salmonella pathogenicity islands in host specificity, host pathogen-interactions and antibiotics resistance of Salmonella enterica / R. Gerlach, M. Hensel // Berl. Munch. Tierarztl. Wochenschr. – 2007. – Vol. 120, № 7–8. – P. 317– 327.

18. Harada A. A Salmonella type III secretion effector interacts with the mammalian serine/threonine protein kinase PKN1 / A. Harada, S. Miller // Cell. Microbiol. – 2006. – Vol. 8, № 5. – P. 837–846.

19. Lawley T. Host transmission of Salmonella enterica serovar Typhimurium is controlled by virulence actors and indigenous intestinal microbiota / T. Lawley, D. Bouley, Y. Hoy // Infect. Immun. – 2008. – Vol. 76, № 1. – P. 403– 416.

20. Mizuno Y. Host defense mechanisms against Salmonella infection / Y. Mizuno // Nihon Rinsho Meneki akkai Kaishi – 2004. – Vol. 27, № 6. – P. 367–372.

21. Mastroeni P. Immunity to systemic Salmonella infection / P. Mastroeni // Curr. Mol. Med. – 2002. – Vol. , № 4. – P. 393–406.

22. Wick M. Living in the danger zone: innate immunity to Salmonella / M. Wick // Curr. Opin. Microbiol. – 2004. – Vol. 7, № 1. – P. 51–57.

23. Alaniz R. Membrane vesicles are immunogenic facsimiles of Salmonella typhimurium that potently activate dendritic cells, prime B and T cell responses, and stimulate protective immunity in vivo / R. Alaniz, B. Deatherage, J. Lara, B. Cookson // J. Immunol. – 2007. – Vol. 179, № 11. – P. 7692–7701.

24. Franchi L. Cytosolic flagellin requires Ipaf for activation of caspase-1 and IL-1β in Salmonella-infected macrophages / L. Franchi, A. Amer, M. Body-Malapel et al. // Nat. Immunol. – 2006. – Vol. 7, № 6. – P. 576–582.

25. Cheminay C. Migration of Salmonella typhimuriumharboring bone marrow-derived dendritic cells towards the chemokines CCL19 and CCL21 / C. Cheminay, M. Schoen, M. Hensel et al. // Microb. Pathog. – 2002. – Vol. 32, № 5. – P. 207–218.

26. Sundquist M. Immunity to Salmonella from a dendritic point of view / M. Sundquist, A. Rydström, M. Wick // Cell. Microbiol. – 2004. – Vol. 6, № 1. – P. 1–11.

27. Wick M. Monocyte and dendritic cell recruitment and activation during oral Salmonella infection / M. Wick //Immunol. Lett. – 2007. – Vol. 112, № 2. – P. 68–74.

28. Zhao C. Salmonella typhimurium infection triggers dendritic cells and macrophages to adopt distinct migration patterns in vivo // C. Zhao, M. Wood, E. Galyov et al. // Eur. J. Immunol. – 2006. – Vol. 36, № 11. – P. 2939–2950.

29. Pietilä T. Activation, cytokine production, and intracellu lar survival of bacteria in Salmonella-infected human monocyte-derived macrophages and dendritic cells // T. Pietilä, V. Veckman, P. Kyllönen et al. // J. Leukoc. Biol. – 2005. – Vol. 78, № 4. – P. 909–920.

30. Кетлинский С.А. Цитокины / С.А. Кетлинский, А.С. Симбирцев. – СПб.: Фолиант, 2008. – 552 c.

31. Cunningham A. Salmonella induces a switched antibody response without germinal centers that impedes the extracellular spread of infection / A. Cunningham, F. Gaspal, K. Serre et al. // J. Immunol. – 2007. – Vol. 178, № 10. – P. 6200–6207.

32. Li Y. Effect of in situ expression of human IL-6 on antibody responses against Salmonella typhimurium antigens /Y. Li, K. Reichenstein, R. Ullrich et al. // FEMS Immunol. Med. Microbiol. – 2003. – Vol. 37, № 2–3. – P. 135–145.

33. Monack D. Salmonella typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nrampl1+/+ mice and can be reactivated by IFN-γ neutralization / D. Monack, D. Bouley, S. Falkow // J. Exp. Med. – 2004. – Vol. 199, № 2. – P. 231–241.

34. Chanana V. Reactive nitrogen intermediates and monokines induce caspase-3 mediated macrophage apoptosis by anaerobically stressed Salmonella typhi / V. Chanana, P. Ray, D. Rishi, P. Rishi // Clin. Exp. Immunol. – 2007. – Vol. 150, № 2. – P. 368–374.

35. Cook P. Salmonella-induced SipB-independent cell death requires Toll-like receptor-4 signalling via the adapter proteins Tram and Trif / P. Cook, S. Tötemeyer, C. Stevenson et al. // Immunol. – 2007. – Vol. 122, № 2. – P. 222–229.

36. Monack D. Salmonella-induced macrophage death: the role of caspase-1 in death and inflammation / D. Monack, W. Navarre, S. Falkow // Microbes Infect. – 2001. – Vol. 3, № 14–15. – P. 1201–1212.

37. Obregon C. Human alveolar macrophages infected by virulent bacteria expressing SipB are a major source of active IL- 18 / C. Obregon, D. Dreher, M. Kok et al. // Infect. Immun. – 2003. – Vol. 71, № 8. – P. 4382–4388.

38. Fink S. Anthrax lethal toxin and Salmonella elicit the common cell death pathway of caspase-1-dependent pyroptosis via distinct mechanisms / S. Fink, T. Bergsbaken, B. Cookson // Proc. Natl. Acad. Sci USA – 2008. – Vol. 105, № 11. – P. 4312–4317.

39. Raffatellu M. The capsule encoding the viaB locus reduces IL-17 expression and mucosal innate responses in the bovine intestinal mucosa during infection with Salmonella enterica serotype Typhi / M. Raffatellu, R. Santos, D. Chessa et al. // Infect. Immun. – 2007. – Vol. 75, № 9. – P. 4342–4350.

40. Bueno S. T cell immunity evasion by virulent Salmonella enterica / S. Bueno, P. González, J. Schwebach, A. Kalergis // Immunol. Lett. – 2007. – Vol. 111, № 1. – P. 14–20.

41. Elhofy A. Salmonella infection does not increase expression and activity of the high affinity IL-12 receptor /A. Elhofy, I. Marriott, K. Bost // J. Immunol. – 2000. – Vol. 165, № 6. – P. 3324–3332.

42. Elhofy A. Limited IL-18 response in Salmonella-infected murine macrophages and in Salmonella-infected mice /A. Elhofy, K. Bost // Infect. Immun. – 1999. – Vol. 67, № 10. – P. 5021–5026.

43. Eckmann L. Cytokines in host defense against Salmonella / L. Eckmann, M. Kagnoff // Microbes Infect. – 2001. – Vol. 3, № 14–15. – P. 1191–1200.

44. Kirby A. The innate immune response differs in primary and secondary Salmonella infection / A. Kirby, U. Yrlid, M. Wick //J. Immunol. – 2002. – Vol. 169, № 8. – P. 4450–4459.

45. Dharmana E. Divergent effects of TNF-α and lymphotoxin-α on lethal endotoxemia and infection with ive Salmonella typhimurium in mice / E. Dharmana, M. Keuter, M. Netea et al. // Eur. Cytokine Netw. – 2002. – Vol. 13, № 1. – P. 104–109.

46. Sundquist M. TNF-α-dependent and -independent maturation of dendritic cells and recruited CD11c(int)CD11b+cells during oral Salmonella infection / M. Sundquist, M. Wick // J. Immunol. – 2005. – Vol. 175, № 5. – P. 3287–3298.

47. Tam M. MyD88 and IFN-α/β differentially control maturation of bystander but not Salmonella-associated dendritic cells or CD11c(int)CD11b+ cells during infection / M. Tam, M. Sundquist, M. Wick // Cell. Microbiol. – 2008. – Vol. 10, № 7. – P. 1517–1529.

48. Sashinami H. The cytokine balance in the maintenance of a persistent infection with Salmonella enterica serovar Typhimurium in mice / H. Sashinami, T. Yamamoto, A. Nakane // Cytokine – 2006. – Vol. 33, № 4. – P. 212–218.

49. Diepen van A. Treatment with anti-TNF-α does not induce reactivation of latent Salmonella enterica serovar Typhimurium infection in C3H/HeN mice / A. van Diepen, C. Martina, R. Flierman // Scand. J. Immunol. – 2007. –Vol. 65, № 5. – P. 407–411.

50. Романова Ю.М. Механизмы активации патогенных бактерий в организме хозяина / Ю.М. Романова, Р.К. Бошнаков, Т.В. Баскакова, А.Л. Гинцбург // Ж. микробиол. – 2000. – № 4. Приложение. – С. 7–11.

51. Романова Ю.М. Активация размножения Salmonella typhimurium в органах зараженных животных при действии ФНО-α и острого γ-облучения / Ю.М. Романова, О.Н. Щегловитова, Р.К. Бошнаков и др. // Rus. J. Immunol. – 2002. – Vol. 7, № 2. – P. 129–134.

52. Raupach B. Caspase-1-mediated activation of IL-1β and IL-18 contributes to innate immune defenses against Salmonella enterica serovar Typhimurium infection / B. Raupach, S. Peuschel, D. Monack, A. Zychlinsky // Infect. Immun. –2006. – Vol. 74, № 8. – P. 4922–4926.

53. Godinez I. Interleukin-23 orchestrates mucosal responses to Salmonella enterica serotype Typhimurium in the intestine / I. Godinez, M. Rafatellu, H. Chu et al. // Infect. Immun. – 2009. – Vol. 77, № 1. – P. 387–398.

54. Lehmann J. IL-12p40-dependent agonistic effects on the development of protective innate and adaptive immunity against Salmonella enteritidis / J. Lehmann, S. Bellmann, C. Werner et al. // J. Immunol. 2001. – Vol. 167, № 9. – P. 5304–5315.

55. Price J. Gamma-IFN-independent effects of IL-12 on immunity to Salmonella enterica serovar Typhimurium /J. Price, K. Simpendorfer, R. Mantena et al. // Infect. Immun. – 2007. – Vol. 75, № 12. – P. 5753–5762.

56. Srinivasan A. Innate immune activation of CD4 T cells in salmonella-infected mice is dependent on IL-18 / A. Srinivasan, R. Salazar-González, M. Jarcho et al. // J. Immunol. – 2007. – Vol. 178, № 10. – P. 6342–6349.

57. Netea M. Neutralization of IL-18 reduces neutrophil tissue accumulation and protects mice against lethal Escherichia coli and Salmonella typhimurium endotoxemia / M. Netea, G. Fantuzzi, B. Kullberg et al. // J. Immunol. – 2000. – Vol. 164, № 5. – P. 2644–2649.

58. Железникова Г.Ф. Роль гамма-интерферона в иммунопатогенезе инфекций (обзор литературы) / Г.Ф. Железникова // Клин. лаб. диагностика – 2008. – № 4. – С. 3–8.

59. Harrington L. A role for natural killer cells in intestinal inflammation caused by infection with Salmonella enterica serovar Typhimurium / L. Harrington, C. Srikanth, R. Antony et al. // FEMS Immunol. Med. Microbiol. – 2007. – Vol. 51, № 2. – P. 372–380.

60. Berntman E. The role of CD1d-restricted NK T lymphocytes in the immune response to oral infection with Salmonella typhimurium / E. Berntman, J. Rolf, C. Johansson et al. // Eur. J. Immunol. – 2005. – Vol. 35, № 7. – P. 2100–2109.

61. Naiki Y. Regulatory role of peritoneal NK1.1+αβ T cells in IL-12 production during Salmonella infection / Y. Naiki, H. Nishimura, T. Kawano et al. // J. Immunol. –1999. – Vol. 163, 4. – P. 2057–2063.

62. Naiki Y. γδ T cells may dichotomously modulate infection with avirulent Salmonella choleraesuis via IFN-γ and IL-13 in mice / Y. Naiki, H. Nishimura, S. Itohara, Y. Yoshikai // Cell. Immunol. – 2000. – Vol. 202, N 1. – P. 61–69.

63. Yrlid U. In vivo activation of dendritic cells and T cells during Salmonella enterica serovar Typhimurium infection / U. Yrlid, M. Svensson, A. Håkansson et al. // Infect. Immun. 2001. – Vol. 69, № 9. – P. 5726–5735.

64. John B. Role of IL-12-independent pathways in regulating generation of IFN-γ component of T cell responses to Salmonella typhimurium / B. John, D. Rajagopal, A. Pashine et al. // J. Immunol. – 2002. – Vol. 169, № 5. – P. 2545–2552.

65. Bao S. Interferon-gamma plays a critical role in intestinal immunity against Salmonella typhimurium infection / S. Bao, K. Beagley, M. France et al. // Immunol. –2000. – Vol. 99, № 3. – P. 464–472.

66. Gajendran N. Regional IFN-γ expression is insufficient for efficacious control of food-borne bacterial pathogens at the gut epithelial barrier / N. Gajendran, H. Mittrücker, K. Bordasch et al. // Int. Immunol. – 2007. – Vol. 19, № 9. – P. 1075– 1081.

67. Koebernick H. Macrophage migration inhibitory factor (MIF) plays a pivotal role in immunity against Salmonella typhimurium / H. Koebernick, L. Grode, J. David et al. // Proc. Natl. Acad. Sci.USA – 2002. – Vol. 99, № 21. – P. 13681– 13686.

68. Fahy O. Control of Salmonella dissemination in vivo by macrophage inflammatory protein (MIP)-3α/CCL20 / O. Fahy, S. Townley, N. Coates et al. // Lab. Invest. – 2004. – Vol. 84, № 11. – P. 1501–1511.

69. Fahy O. CXC16 regulates cell-mediated immunity to Salmonella enterica serovar Enteritidis via romotion of gammainterferon production / O. Fahy, S. Townley, S. McColl // Infect. Immun. – 2006. – Vol. 74, № 12. – P. 6885–6894.

70. Depaolo R. The chemokine CCL2 is required for control of murine gastric Salmonella enterica infection / R. Depaolo, R. Lathan, B. Rollins, W. Karpus // Infect. Immun. – 2005. – Vol. 73, № 10. – P. 6514–6522.

71. Galdiero M. Effect of transforming growth factor beta on experimental Salmonella typhimurium nfection in mice /M. Galdiero, A. Marcatili, G. Cipollaro de l’Ero et al. // Infect. Immun. – 1999. – Vol. 67, № 3. – P. 1432–1438.

72. Grassl G. Chronic enteric salmonella infection in mice leads to severe and persistent intestinal fibrosis // G. Grassl, Y. Valdez, K. Bergstrom et al. // Gastroenterology – 2008. – Vol. 134, № 3. – P. 768–780.

73. Izadpanah A. Regulated MIP-3α/CCL20 production by human intestinal epithelium: mechanism for odulating mucosal immunity / A. Izadpanah, M. Dwinell, L. Eckmann et al. // Am. J. Physiol. Gastrointest. Liver Physiol. – 2001. – Vol. 280, № 4. – P. 710–719.

74. Berin M. Production of MDC/CCL22 by human intestinal epithelial cells / M. Berin, M. Dwinell, L. Eckmann, M. Kagnoff // Am. J. Physiol. Gastrointest. Liver Physiol. – 2001. – Vol. 280, № 6. – P. 217–226.

75. Maaser C. Ubiquitous production of macrophage migration inhibitory factor by human gastric and intestinal epithelium / C. Maaser, L. Eckmann, G. Paesold et al. // Gastroenterology – 2002. – Vol. 122, № 3. – P. 667–680.

76. Stoycheva M. Cytokines in Salmonella infection /M. Stoycheva, M. Murdjeva // Folia Med. (Plovdiv) – 2004. – Vol. 46, № 4. – P. 5–10.

77. Lin C. The diagnostic value of serum IL-6 and IL-8 in children with acute gastroenteritis / C. Lin, C. Hsieh, S. Chen et al. // J. Pediatr. Gastroenterol. Nutr. – 2006. – Vol. 43, № 1. – P. 25–29.

78. Мартынова Н.Н. Динамика содержания цитокинов и газового состава крови больных сальмонеллезом и острым шигеллезом / Н.Н. Мартынова, М.Н. Аленов, С.Г. Пак, К. Умбетова // Тер. Архив – 2006. – Т. 78, № 11. – С. 24–27.

79. Stoycheva M. Serum levels of IFN-γ, IL-12, TNF-α, and IL-10, and bacterial clearance in patients with gastroenteric Salmonella infection / M. Stoycheva, M. Murdjeva // Scand. J. Infect. Dis. – 2005. – Vol. 37, № 1. – P. 11–14.

80. Железникова Г.Ф. Продукция цитокинов при сальмонеллезной инфекции у детей / Г.Ф. Железникова, О.А. Волохова, М.К. Бехтерева, Н.Е Монахова // Росс. аллергол. журнал – 2009. – № 3, вып. 1. – С. 462.

81. Mizuno Y. Th1 and Th2-inducing cytokines in Salmonella infection / Y. Mizuno, H. Takada, A. Nomura et al. // Clin. Exp. Immunol. – 2003. – Vol. 131, № 1. – P. 111–117.

82. Pascual D. The protective role of IL-18 in Salmonella infection / D. Pascual // Curr. Opin. Infect. Dis. – 2001. – Vol. 14, № 3. – P. 265–271.

83. Fieschi C. The role of IL-12 in human infectious diseases: only a faint signature // C. Fieschi, J. Casanova // Eur. J. Immunol. – 2003. – Vol. 33, № 6. – P. 1461–1464.

84. Lin A. Host defense against Salmonella and rotaviral gastroenteritis: a serial study of transcriptional factors and cytokines / A. Lin, C. Lin, C. Chen, W. Chen // J. Microbiol. Immunol. Infect. – 2008. – Vol. 41, № 3. – P. 265–271.

85. Ottenhoff T. Genetics, cytokines and human infectious disease: lessons from weakly pathogenic mycobacteria and salmonellae / T. Ottenhoff, F. Verreck, E. Lichtenauer-Kaligis et al. // Nat. Genet. – 2002. – Vol. 32, № 1. – P. 97–105.

86. Janssen R. Divergent role for TNF-α in IFN-γ-induced killing of Toxoplasma gondii and Salmonella typhimurium contributes to selective susceptibility of patients with partial IFN-γ receptor deficiency / R. Janssen, A. Van Wengen, E. Verhard et al. // J. Immunol. – 2002. – Vol. 169, № 7. – P. 3900–3907.

87. Cleary A. Impared accumulation and function of memory CD4 T cells in human IL-12 receptor beta 1 defficiency /A. Cleary, W. Tu, A. Enright et al. // J. Immunol. – 2003. – Vol. 170, № 1. – P. 597–603.

88. MacLennan C. IL-12 and IL-23 are key cytokines for immunity against Salmonella in humans / C. MacLennan, C. Fieschi, D. Lammas et al. // J. Infect. Dis. – 2004. – Vol. 190, № 10. – P. 1755–1757.

89. Vosse van de E. Human host genetic factors in mycobacterial and Salmonella infection: lessons from single gene disorders in IL-12/IL-23-dependent signaling that affect innate and adaptive immunity / E. van de Vosse, T. Ottenhoff // Microbes Infect. – 2006. – Vol. 8, № 4. – P. 1167–1173.

90. House D. Cytokine release by lipopolysaccharidestimulated whole blood from patients with typhoid fever / D. House, N. Chinh, T. Hien et al. // J. Infect. Dis. – 2002. – Vol. 186, № 2. – P. 240–245.

91. Fidan I. Effects of recombinant interferon-gamma on cytokine secretion from monocyte-derived macrophages infected with Salmonella typhi / I. Fidan, E. Yesilyurt, F. Gurelik et al. // Comp. Immunol. Microbiol. Infect. Dis. – 2008. – Vol. 31, № 6. – P. 467–475.

92. Salerno-Gonçalves R. Characterization of CD8+ effector T cell responses in volunteers immunized with Salmonella enterica serovar Typhi strain Ty21a typhoid vaccine / R. Salerno-Gonçalves, M. Pasetti, M. Sztein // J. Immunol. –2002. – Vol. 169, № 4. – P. 2196–2203.

93. Sztein M. Cell-mediated immunity and antibody responses elicited by attenuated Salmonella enterica serovar Typhi strains used as live oral vaccines in humans / M. Sztein // Clin. Infect. Dis. – 2007. – Vol. 45, Suppl. 1. – P. 15–19.

94. Salazar-González R. Induction of cellular immune response and anti-Salmonella enterica serovar typhi bactericidal antibodies in healthy volunteers by immunization with a vaccine candidate against typhoid fever / R. Salazar-González, C. Maldonado-Bernal, N. Ramírez-Cruz et al. // Immunol. Lett. – 2004. – Vol. 93, № 2–3. – P. 115–122.

95. Wahid R. Cell-mediated immune responses in human after immunization with one or two doses of oral live attenuated typhoid vaccine CVD 909 / R. Wahid, R. Salerno-Gonçalves, C. Tacket et al. // Vaccine – 2007. – Vol. 25, № 8. – P. 1416–1425.


Review

For citations:


Zheleznikova G.F., Volochova O.A., Tichomirova O.V., Bechtereva M.K. Cytokines in pathogenesis of salmonella infection. Journal Infectology. 2009;1(4):10-22. (In Russ.) https://doi.org/10.22625/2072-6732-2009-1-4-10-22

Views: 761


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-6732 (Print)