ЦИТОКИНЫ В ПАТОГЕНЕЗЕ САЛЬМОНЕЛЛЕЗНОЙ ИНФЕКЦИИ


https://doi.org/10.22625/2072-6732-2009-1-4-10-22

Полный текст:


Аннотация

В обзоре представлены современные сведения о механизмах иммунной защиты при сальмонеллезной инфекции, способности сальмонелл противостоять этим механизмам. Основной акцент сделан на реакции системы цитокинов врожденного и приобретенного иммунитета, описанной в экспериментальных и клинических исследованиях.


Об авторах

Г. Ф. Железникова
ФГУ НИИ детских инфекций ФМБА, Санкт-Петербург
Россия
8(812)234-90-06


О. А. Волохова
ФГУ НИИ детских инфекций ФМБА, Санкт-Петербург
Россия


О. В. Тихомирова
ФГУ НИИ детских инфекций ФМБА, Санкт-Петербург
Россия


М. К. Бехтерева
ФГУ НИИ детских инфекций ФМБА, Санкт-Петербург
Россия


Список литературы

1. Поздеев О.К. Энтеробактерии: руководство для врачей / О.К. Поздеев, Р.В. Федоров. – М.: Гэотар Медиа, 2007. – 720 c.

2. Coburn B. Salmonella, the host and disease: a brief review / B. Coburn, G. Grassl, B. Finlay // Immunol. Cell. Biol. – 2007. – Vol. 85, № 2. – P. 112–118.

3. Layton A. Salmonella-induced enteritis: molecular pathogenesis and therapeutic implications / A. Layton, E. Galyov // Expert. Rev. Mol. Med. – 2007. – Vol. 9, № 18. – P. 1–17.

4. Sinha R. Sporadic enteric reactive arthritis and undifferentiated spondyloarthropathy: evidence for involvement of Salmonella typhimurium / R. Sinha, A. Aggarval, K. Prasad, R. Misra // J. Rheumatol. – 2003. – Vol. 30, № 1. – P. 105– 113.

5. Saarinen M. Invasion of Salmonella into human intestinal epithelial cells is modulated by HLA-B27 / M. Saarinen, P. Ekman, M. Ikeda et al. // Rheumatology (Oxford) – 2002. – Vol. 41, № 6. – P. 651–657.

6. Minami K. Cerebrospinal fluid cytokines in Salmonella urbana encephalopathy / K. Minami, T. Yanagawa, M. Okuda t al. // Tohoku J. Exp. Med. – 2004. – Vol. 203, № 2. – P. 129–132.

7. Sebastiani G. Host immune response to Salmonella enterica serovar Typhimurium infection in mice derived from wild strains / G. Sebastiani, V. Blais, V. Sancho et al. // Infect. Immun. – 2002. – Vol. 70, № 4. – P. 1997–2009.

8. Mittrücker H. Characterization of the murine T-lymphocyte response to Salmonella enterica serovar Typhimurium infection / H. Mittrücker, A. Köhler, S. Kaufmann // Infect. Immun. – 2002. – Vol. 70, № 1. – P. 199–203.

9. Fernandez-Cabezudo M. Evidence for the requirement for CD40-CD154 interactions in resistance to infections with attenuated Salmonella / M. Fernandez-Cabezudo, A. Ullah, R. Flavell, B. Al-Ramadi J. // Endotoxin Res. – 2005. – Vol. 11, № 6. – P. 395–399.

10. Brumme S. Impact of Salmonella typhimurium DT104 virulence factors invC and sseD on the onset, clinical course, colonization patterns and immune response of porcine salmonellosis / S. Brumme, T. Arnold, H. Sigmarsson et al. // Vet. Microbiol. – 2007. – Vol. 124, № 3–4. – P. 274– 285.

11. Cho W. Expression of inflammatory cytokines (TNF-α, IL-1, IL-6 and IL-8) in colon of pigs naturally infected with Salmonella typhimurium and S. choleraesuis / W. Cho, C. Chae // J. Vet. Med. Physiol. Pathol. Clin. Med. – 2003. – Vol. 50, № 10. – P. 484–487.

12. Hedges J. Mucosal lymphatic-derived γδT cells respond early to experimental Salmonella enterocolitis by increasing expression of IL-2Rα / J. Hedges, D. Buckner, K. Rask et al. // Cell. Immunol. – 2007. – Vol. 246, № 1. – P. 8–16.

13. Norimatsu M. Differential response of bovine monocyte-derived macrophages and dendritic cells to infection with Salmonella typhimurium in a low-dose model in vitro / M. Norimatsu, J. Harris, V. Chance et al. // Immunology – 2003. – Vol. 108, № 1. – P. 55–61.

14. Splíchal I. Early cytokine response of gnotobiotic piglets to Salmonella enterica serotype typhimurium / I. Splíchal, I. Trebichavský, Y. Muneta, Y. Mori // Vet. Res. – 2002. – Vol. 33, № 3. – P. 291–297.

15. Trebichavský I. Systemic and local cytokine response of young piglets to oral infection with almonella enterica serotype Typhimurium / I. Trebichavský, I. Splíchal, A. Splíchalová et al. // Folia Microbiol.(Praha) – 2003. – Vol. 48, № 3. – P. 403–407.

16. Beal R. Temporal dynamics of the cellular, humoral and cytokine responses in chickens during primary and secondary infection with Salmonella enterica serovar Typhimurium / R. Beal, C. Powers, P. Wigley et al. // Avian Pathol. – 2004. – Vol. 33, № 1. – P. 25–33.

17. Gerlach R. Salmonella pathogenicity islands in host specificity, host pathogen-interactions and antibiotics resistance of Salmonella enterica / R. Gerlach, M. Hensel // Berl. Munch. Tierarztl. Wochenschr. – 2007. – Vol. 120, № 7–8. – P. 317– 327.

18. Harada A. A Salmonella type III secretion effector interacts with the mammalian serine/threonine protein kinase PKN1 / A. Harada, S. Miller // Cell. Microbiol. – 2006. – Vol. 8, № 5. – P. 837–846.

19. Lawley T. Host transmission of Salmonella enterica serovar Typhimurium is controlled by virulence actors and indigenous intestinal microbiota / T. Lawley, D. Bouley, Y. Hoy // Infect. Immun. – 2008. – Vol. 76, № 1. – P. 403– 416.

20. Mizuno Y. Host defense mechanisms against Salmonella infection / Y. Mizuno // Nihon Rinsho Meneki akkai Kaishi – 2004. – Vol. 27, № 6. – P. 367–372.

21. Mastroeni P. Immunity to systemic Salmonella infection / P. Mastroeni // Curr. Mol. Med. – 2002. – Vol. , № 4. – P. 393–406.

22. Wick M. Living in the danger zone: innate immunity to Salmonella / M. Wick // Curr. Opin. Microbiol. – 2004. – Vol. 7, № 1. – P. 51–57.

23. Alaniz R. Membrane vesicles are immunogenic facsimiles of Salmonella typhimurium that potently activate dendritic cells, prime B and T cell responses, and stimulate protective immunity in vivo / R. Alaniz, B. Deatherage, J. Lara, B. Cookson // J. Immunol. – 2007. – Vol. 179, № 11. – P. 7692–7701.

24. Franchi L. Cytosolic flagellin requires Ipaf for activation of caspase-1 and IL-1β in Salmonella-infected macrophages / L. Franchi, A. Amer, M. Body-Malapel et al. // Nat. Immunol. – 2006. – Vol. 7, № 6. – P. 576–582.

25. Cheminay C. Migration of Salmonella typhimuriumharboring bone marrow-derived dendritic cells towards the chemokines CCL19 and CCL21 / C. Cheminay, M. Schoen, M. Hensel et al. // Microb. Pathog. – 2002. – Vol. 32, № 5. – P. 207–218.

26. Sundquist M. Immunity to Salmonella from a dendritic point of view / M. Sundquist, A. Rydström, M. Wick // Cell. Microbiol. – 2004. – Vol. 6, № 1. – P. 1–11.

27. Wick M. Monocyte and dendritic cell recruitment and activation during oral Salmonella infection / M. Wick //Immunol. Lett. – 2007. – Vol. 112, № 2. – P. 68–74.

28. Zhao C. Salmonella typhimurium infection triggers dendritic cells and macrophages to adopt distinct migration patterns in vivo // C. Zhao, M. Wood, E. Galyov et al. // Eur. J. Immunol. – 2006. – Vol. 36, № 11. – P. 2939–2950.

29. Pietilä T. Activation, cytokine production, and intracellu lar survival of bacteria in Salmonella-infected human monocyte-derived macrophages and dendritic cells // T. Pietilä, V. Veckman, P. Kyllönen et al. // J. Leukoc. Biol. – 2005. – Vol. 78, № 4. – P. 909–920.

30. Кетлинский С.А. Цитокины / С.А. Кетлинский, А.С. Симбирцев. – СПб.: Фолиант, 2008. – 552 c.

31. Cunningham A. Salmonella induces a switched antibody response without germinal centers that impedes the extracellular spread of infection / A. Cunningham, F. Gaspal, K. Serre et al. // J. Immunol. – 2007. – Vol. 178, № 10. – P. 6200–6207.

32. Li Y. Effect of in situ expression of human IL-6 on antibody responses against Salmonella typhimurium antigens /Y. Li, K. Reichenstein, R. Ullrich et al. // FEMS Immunol. Med. Microbiol. – 2003. – Vol. 37, № 2–3. – P. 135–145.

33. Monack D. Salmonella typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nrampl1+/+ mice and can be reactivated by IFN-γ neutralization / D. Monack, D. Bouley, S. Falkow // J. Exp. Med. – 2004. – Vol. 199, № 2. – P. 231–241.

34. Chanana V. Reactive nitrogen intermediates and monokines induce caspase-3 mediated macrophage apoptosis by anaerobically stressed Salmonella typhi / V. Chanana, P. Ray, D. Rishi, P. Rishi // Clin. Exp. Immunol. – 2007. – Vol. 150, № 2. – P. 368–374.

35. Cook P. Salmonella-induced SipB-independent cell death requires Toll-like receptor-4 signalling via the adapter proteins Tram and Trif / P. Cook, S. Tötemeyer, C. Stevenson et al. // Immunol. – 2007. – Vol. 122, № 2. – P. 222–229.

36. Monack D. Salmonella-induced macrophage death: the role of caspase-1 in death and inflammation / D. Monack, W. Navarre, S. Falkow // Microbes Infect. – 2001. – Vol. 3, № 14–15. – P. 1201–1212.

37. Obregon C. Human alveolar macrophages infected by virulent bacteria expressing SipB are a major source of active IL- 18 / C. Obregon, D. Dreher, M. Kok et al. // Infect. Immun. – 2003. – Vol. 71, № 8. – P. 4382–4388.

38. Fink S. Anthrax lethal toxin and Salmonella elicit the common cell death pathway of caspase-1-dependent pyroptosis via distinct mechanisms / S. Fink, T. Bergsbaken, B. Cookson // Proc. Natl. Acad. Sci USA – 2008. – Vol. 105, № 11. – P. 4312–4317.

39. Raffatellu M. The capsule encoding the viaB locus reduces IL-17 expression and mucosal innate responses in the bovine intestinal mucosa during infection with Salmonella enterica serotype Typhi / M. Raffatellu, R. Santos, D. Chessa et al. // Infect. Immun. – 2007. – Vol. 75, № 9. – P. 4342–4350.

40. Bueno S. T cell immunity evasion by virulent Salmonella enterica / S. Bueno, P. González, J. Schwebach, A. Kalergis // Immunol. Lett. – 2007. – Vol. 111, № 1. – P. 14–20.

41. Elhofy A. Salmonella infection does not increase expression and activity of the high affinity IL-12 receptor /A. Elhofy, I. Marriott, K. Bost // J. Immunol. – 2000. – Vol. 165, № 6. – P. 3324–3332.

42. Elhofy A. Limited IL-18 response in Salmonella-infected murine macrophages and in Salmonella-infected mice /A. Elhofy, K. Bost // Infect. Immun. – 1999. – Vol. 67, № 10. – P. 5021–5026.

43. Eckmann L. Cytokines in host defense against Salmonella / L. Eckmann, M. Kagnoff // Microbes Infect. – 2001. – Vol. 3, № 14–15. – P. 1191–1200.

44. Kirby A. The innate immune response differs in primary and secondary Salmonella infection / A. Kirby, U. Yrlid, M. Wick //J. Immunol. – 2002. – Vol. 169, № 8. – P. 4450–4459.

45. Dharmana E. Divergent effects of TNF-α and lymphotoxin-α on lethal endotoxemia and infection with ive Salmonella typhimurium in mice / E. Dharmana, M. Keuter, M. Netea et al. // Eur. Cytokine Netw. – 2002. – Vol. 13, № 1. – P. 104–109.

46. Sundquist M. TNF-α-dependent and -independent maturation of dendritic cells and recruited CD11c(int)CD11b+cells during oral Salmonella infection / M. Sundquist, M. Wick // J. Immunol. – 2005. – Vol. 175, № 5. – P. 3287–3298.

47. Tam M. MyD88 and IFN-α/β differentially control maturation of bystander but not Salmonella-associated dendritic cells or CD11c(int)CD11b+ cells during infection / M. Tam, M. Sundquist, M. Wick // Cell. Microbiol. – 2008. – Vol. 10, № 7. – P. 1517–1529.

48. Sashinami H. The cytokine balance in the maintenance of a persistent infection with Salmonella enterica serovar Typhimurium in mice / H. Sashinami, T. Yamamoto, A. Nakane // Cytokine – 2006. – Vol. 33, № 4. – P. 212–218.

49. Diepen van A. Treatment with anti-TNF-α does not induce reactivation of latent Salmonella enterica serovar Typhimurium infection in C3H/HeN mice / A. van Diepen, C. Martina, R. Flierman // Scand. J. Immunol. – 2007. –Vol. 65, № 5. – P. 407–411.

50. Романова Ю.М. Механизмы активации патогенных бактерий в организме хозяина / Ю.М. Романова, Р.К. Бошнаков, Т.В. Баскакова, А.Л. Гинцбург // Ж. микробиол. – 2000. – № 4. Приложение. – С. 7–11.

51. Романова Ю.М. Активация размножения Salmonella typhimurium в органах зараженных животных при действии ФНО-α и острого γ-облучения / Ю.М. Романова, О.Н. Щегловитова, Р.К. Бошнаков и др. // Rus. J. Immunol. – 2002. – Vol. 7, № 2. – P. 129–134.

52. Raupach B. Caspase-1-mediated activation of IL-1β and IL-18 contributes to innate immune defenses against Salmonella enterica serovar Typhimurium infection / B. Raupach, S. Peuschel, D. Monack, A. Zychlinsky // Infect. Immun. –2006. – Vol. 74, № 8. – P. 4922–4926.

53. Godinez I. Interleukin-23 orchestrates mucosal responses to Salmonella enterica serotype Typhimurium in the intestine / I. Godinez, M. Rafatellu, H. Chu et al. // Infect. Immun. – 2009. – Vol. 77, № 1. – P. 387–398.

54. Lehmann J. IL-12p40-dependent agonistic effects on the development of protective innate and adaptive immunity against Salmonella enteritidis / J. Lehmann, S. Bellmann, C. Werner et al. // J. Immunol. 2001. – Vol. 167, № 9. – P. 5304–5315.

55. Price J. Gamma-IFN-independent effects of IL-12 on immunity to Salmonella enterica serovar Typhimurium /J. Price, K. Simpendorfer, R. Mantena et al. // Infect. Immun. – 2007. – Vol. 75, № 12. – P. 5753–5762.

56. Srinivasan A. Innate immune activation of CD4 T cells in salmonella-infected mice is dependent on IL-18 / A. Srinivasan, R. Salazar-González, M. Jarcho et al. // J. Immunol. – 2007. – Vol. 178, № 10. – P. 6342–6349.

57. Netea M. Neutralization of IL-18 reduces neutrophil tissue accumulation and protects mice against lethal Escherichia coli and Salmonella typhimurium endotoxemia / M. Netea, G. Fantuzzi, B. Kullberg et al. // J. Immunol. – 2000. – Vol. 164, № 5. – P. 2644–2649.

58. Железникова Г.Ф. Роль гамма-интерферона в иммунопатогенезе инфекций (обзор литературы) / Г.Ф. Железникова // Клин. лаб. диагностика – 2008. – № 4. – С. 3–8.

59. Harrington L. A role for natural killer cells in intestinal inflammation caused by infection with Salmonella enterica serovar Typhimurium / L. Harrington, C. Srikanth, R. Antony et al. // FEMS Immunol. Med. Microbiol. – 2007. – Vol. 51, № 2. – P. 372–380.

60. Berntman E. The role of CD1d-restricted NK T lymphocytes in the immune response to oral infection with Salmonella typhimurium / E. Berntman, J. Rolf, C. Johansson et al. // Eur. J. Immunol. – 2005. – Vol. 35, № 7. – P. 2100–2109.

61. Naiki Y. Regulatory role of peritoneal NK1.1+αβ T cells in IL-12 production during Salmonella infection / Y. Naiki, H. Nishimura, T. Kawano et al. // J. Immunol. –1999. – Vol. 163, 4. – P. 2057–2063.

62. Naiki Y. γδ T cells may dichotomously modulate infection with avirulent Salmonella choleraesuis via IFN-γ and IL-13 in mice / Y. Naiki, H. Nishimura, S. Itohara, Y. Yoshikai // Cell. Immunol. – 2000. – Vol. 202, N 1. – P. 61–69.

63. Yrlid U. In vivo activation of dendritic cells and T cells during Salmonella enterica serovar Typhimurium infection / U. Yrlid, M. Svensson, A. Håkansson et al. // Infect. Immun. 2001. – Vol. 69, № 9. – P. 5726–5735.

64. John B. Role of IL-12-independent pathways in regulating generation of IFN-γ component of T cell responses to Salmonella typhimurium / B. John, D. Rajagopal, A. Pashine et al. // J. Immunol. – 2002. – Vol. 169, № 5. – P. 2545–2552.

65. Bao S. Interferon-gamma plays a critical role in intestinal immunity against Salmonella typhimurium infection / S. Bao, K. Beagley, M. France et al. // Immunol. –2000. – Vol. 99, № 3. – P. 464–472.

66. Gajendran N. Regional IFN-γ expression is insufficient for efficacious control of food-borne bacterial pathogens at the gut epithelial barrier / N. Gajendran, H. Mittrücker, K. Bordasch et al. // Int. Immunol. – 2007. – Vol. 19, № 9. – P. 1075– 1081.

67. Koebernick H. Macrophage migration inhibitory factor (MIF) plays a pivotal role in immunity against Salmonella typhimurium / H. Koebernick, L. Grode, J. David et al. // Proc. Natl. Acad. Sci.USA – 2002. – Vol. 99, № 21. – P. 13681– 13686.

68. Fahy O. Control of Salmonella dissemination in vivo by macrophage inflammatory protein (MIP)-3α/CCL20 / O. Fahy, S. Townley, N. Coates et al. // Lab. Invest. – 2004. – Vol. 84, № 11. – P. 1501–1511.

69. Fahy O. CXC16 regulates cell-mediated immunity to Salmonella enterica serovar Enteritidis via romotion of gammainterferon production / O. Fahy, S. Townley, S. McColl // Infect. Immun. – 2006. – Vol. 74, № 12. – P. 6885–6894.

70. Depaolo R. The chemokine CCL2 is required for control of murine gastric Salmonella enterica infection / R. Depaolo, R. Lathan, B. Rollins, W. Karpus // Infect. Immun. – 2005. – Vol. 73, № 10. – P. 6514–6522.

71. Galdiero M. Effect of transforming growth factor beta on experimental Salmonella typhimurium nfection in mice /M. Galdiero, A. Marcatili, G. Cipollaro de l’Ero et al. // Infect. Immun. – 1999. – Vol. 67, № 3. – P. 1432–1438.

72. Grassl G. Chronic enteric salmonella infection in mice leads to severe and persistent intestinal fibrosis // G. Grassl, Y. Valdez, K. Bergstrom et al. // Gastroenterology – 2008. – Vol. 134, № 3. – P. 768–780.

73. Izadpanah A. Regulated MIP-3α/CCL20 production by human intestinal epithelium: mechanism for odulating mucosal immunity / A. Izadpanah, M. Dwinell, L. Eckmann et al. // Am. J. Physiol. Gastrointest. Liver Physiol. – 2001. – Vol. 280, № 4. – P. 710–719.

74. Berin M. Production of MDC/CCL22 by human intestinal epithelial cells / M. Berin, M. Dwinell, L. Eckmann, M. Kagnoff // Am. J. Physiol. Gastrointest. Liver Physiol. – 2001. – Vol. 280, № 6. – P. 217–226.

75. Maaser C. Ubiquitous production of macrophage migration inhibitory factor by human gastric and intestinal epithelium / C. Maaser, L. Eckmann, G. Paesold et al. // Gastroenterology – 2002. – Vol. 122, № 3. – P. 667–680.

76. Stoycheva M. Cytokines in Salmonella infection /M. Stoycheva, M. Murdjeva // Folia Med. (Plovdiv) – 2004. – Vol. 46, № 4. – P. 5–10.

77. Lin C. The diagnostic value of serum IL-6 and IL-8 in children with acute gastroenteritis / C. Lin, C. Hsieh, S. Chen et al. // J. Pediatr. Gastroenterol. Nutr. – 2006. – Vol. 43, № 1. – P. 25–29.

78. Мартынова Н.Н. Динамика содержания цитокинов и газового состава крови больных сальмонеллезом и острым шигеллезом / Н.Н. Мартынова, М.Н. Аленов, С.Г. Пак, К. Умбетова // Тер. Архив – 2006. – Т. 78, № 11. – С. 24–27.

79. Stoycheva M. Serum levels of IFN-γ, IL-12, TNF-α, and IL-10, and bacterial clearance in patients with gastroenteric Salmonella infection / M. Stoycheva, M. Murdjeva // Scand. J. Infect. Dis. – 2005. – Vol. 37, № 1. – P. 11–14.

80. Железникова Г.Ф. Продукция цитокинов при сальмонеллезной инфекции у детей / Г.Ф. Железникова, О.А. Волохова, М.К. Бехтерева, Н.Е Монахова // Росс. аллергол. журнал – 2009. – № 3, вып. 1. – С. 462.

81. Mizuno Y. Th1 and Th2-inducing cytokines in Salmonella infection / Y. Mizuno, H. Takada, A. Nomura et al. // Clin. Exp. Immunol. – 2003. – Vol. 131, № 1. – P. 111–117.

82. Pascual D. The protective role of IL-18 in Salmonella infection / D. Pascual // Curr. Opin. Infect. Dis. – 2001. – Vol. 14, № 3. – P. 265–271.

83. Fieschi C. The role of IL-12 in human infectious diseases: only a faint signature // C. Fieschi, J. Casanova // Eur. J. Immunol. – 2003. – Vol. 33, № 6. – P. 1461–1464.

84. Lin A. Host defense against Salmonella and rotaviral gastroenteritis: a serial study of transcriptional factors and cytokines / A. Lin, C. Lin, C. Chen, W. Chen // J. Microbiol. Immunol. Infect. – 2008. – Vol. 41, № 3. – P. 265–271.

85. Ottenhoff T. Genetics, cytokines and human infectious disease: lessons from weakly pathogenic mycobacteria and salmonellae / T. Ottenhoff, F. Verreck, E. Lichtenauer-Kaligis et al. // Nat. Genet. – 2002. – Vol. 32, № 1. – P. 97–105.

86. Janssen R. Divergent role for TNF-α in IFN-γ-induced killing of Toxoplasma gondii and Salmonella typhimurium contributes to selective susceptibility of patients with partial IFN-γ receptor deficiency / R. Janssen, A. Van Wengen, E. Verhard et al. // J. Immunol. – 2002. – Vol. 169, № 7. – P. 3900–3907.

87. Cleary A. Impared accumulation and function of memory CD4 T cells in human IL-12 receptor beta 1 defficiency /A. Cleary, W. Tu, A. Enright et al. // J. Immunol. – 2003. – Vol. 170, № 1. – P. 597–603.

88. MacLennan C. IL-12 and IL-23 are key cytokines for immunity against Salmonella in humans / C. MacLennan, C. Fieschi, D. Lammas et al. // J. Infect. Dis. – 2004. – Vol. 190, № 10. – P. 1755–1757.

89. Vosse van de E. Human host genetic factors in mycobacterial and Salmonella infection: lessons from single gene disorders in IL-12/IL-23-dependent signaling that affect innate and adaptive immunity / E. van de Vosse, T. Ottenhoff // Microbes Infect. – 2006. – Vol. 8, № 4. – P. 1167–1173.

90. House D. Cytokine release by lipopolysaccharidestimulated whole blood from patients with typhoid fever / D. House, N. Chinh, T. Hien et al. // J. Infect. Dis. – 2002. – Vol. 186, № 2. – P. 240–245.

91. Fidan I. Effects of recombinant interferon-gamma on cytokine secretion from monocyte-derived macrophages infected with Salmonella typhi / I. Fidan, E. Yesilyurt, F. Gurelik et al. // Comp. Immunol. Microbiol. Infect. Dis. – 2008. – Vol. 31, № 6. – P. 467–475.

92. Salerno-Gonçalves R. Characterization of CD8+ effector T cell responses in volunteers immunized with Salmonella enterica serovar Typhi strain Ty21a typhoid vaccine / R. Salerno-Gonçalves, M. Pasetti, M. Sztein // J. Immunol. –2002. – Vol. 169, № 4. – P. 2196–2203.

93. Sztein M. Cell-mediated immunity and antibody responses elicited by attenuated Salmonella enterica serovar Typhi strains used as live oral vaccines in humans / M. Sztein // Clin. Infect. Dis. – 2007. – Vol. 45, Suppl. 1. – P. 15–19.

94. Salazar-González R. Induction of cellular immune response and anti-Salmonella enterica serovar typhi bactericidal antibodies in healthy volunteers by immunization with a vaccine candidate against typhoid fever / R. Salazar-González, C. Maldonado-Bernal, N. Ramírez-Cruz et al. // Immunol. Lett. – 2004. – Vol. 93, № 2–3. – P. 115–122.

95. Wahid R. Cell-mediated immune responses in human after immunization with one or two doses of oral live attenuated typhoid vaccine CVD 909 / R. Wahid, R. Salerno-Gonçalves, C. Tacket et al. // Vaccine – 2007. – Vol. 25, № 8. – P. 1416–1425.


Дополнительные файлы

Для цитирования: Железникова Г.Ф., Волохова О.А., Тихомирова О.В., Бехтерева М.К. ЦИТОКИНЫ В ПАТОГЕНЕЗЕ САЛЬМОНЕЛЛЕЗНОЙ ИНФЕКЦИИ. Журнал инфектологии. 2009;1(4):10-22. https://doi.org/10.22625/2072-6732-2009-1-4-10-22

For citation: Zheleznikova G.F., Volochova O.A., Tichomirova O.V., Bechtereva M.K. Cytokines in pathogenesis of salmonella infection. Journal Infectology. 2009;1(4):10-22. (In Russ.) https://doi.org/10.22625/2072-6732-2009-1-4-10-22

Просмотров: 281

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2072-6732 (Print)
ISSN 2499-9865 (Online)