Preview

Journal Infectology

Advanced search

Hemostasis in patients with influenza

https://doi.org/10.22625/2072-6732-2025-17-4-79-87

Abstract

Influenza remains the most significant acute respiratory viral infection due to its high incidence rate, potential for severe disease progression, and complications. Chronic cardiovascular diseases, which are associated with endothelial dysfunction, represent risk factors for severe influenza outcomes and poor prognosis. Given the important role of hemostatic disorders in the development of cardiovascular pathology during severe infectious diseases, studying hemostasis in influenza appears highly relevant.
Research Objective: To evaluate hemostatic parameters in adult patients with complicated and uncomplicated influenza.
Materials and Methods. We analyzed medical records of 64 influenza patients aged 19 to 90 years hospitalized at the Professor A.F. Agafonov Republican Clinical Infectious Diseases Hospital (GAUZ “RKIB”) between December 1, 2023, and March 1, 2024. The median patient age was 65 years. Influenza A was diagnosed in 61 patients (95%), predominantly caused by A/H1N1 (50 cases) and A/H3N2 (11 cases). Three patients (5%) had influenza B. Pneumonia, confirmed by chest CT, complicated influenza in 32 patients (50%). Chronic cardiovascular diseases were present in 45 patients (70%). Hemostasis was assessed through platelet count, Ddimer level, prothrombin time (PT), prothrombin index (PTI), INR, and aPTT.
Results. The acute phase of influenza was associated with elevated D-dimer levels, which were significantly higher than in the control group (p=0.000). The median D-dimer in influenza patients was 4.9 times higher than controls. Patients with pre-existing cardiovascular disease had 2.5-fold higher D-dimer levels compared to those without (p=0.02). Influenza patients with pneumonia showed 3.8-fold higher median D-dimer levels versus those without pneumonia (p=0.0009). Non-survivors had 2.8-fold higher admission D-dimer levels than survivors (p=0.003). A D-dimer level >3000 ng/mL in influenza-associated pneumonia correlated with high mortality risk (p<0.05).
Conclusion. Patients with influenza complicated by pneumonia exhibit elevated D-dimer levels, creating a prothrombotic state that predisposes to thrombotic complications.

About the Authors

E. I. Nasyrova
Kazan State Medical University
Russian Federation

Kazan



Kh. S. Khaertynov
Kazan State Medical University
Russian Federation

Kazan



V. A. Anokhin
Kazan State Medical University
Russian Federation

Kazan



G. F. Mingazova
Republican Clinical Infectious Diseases Hospital named after professor A.F. Agafonov
Russian Federation

Kazan



References

1. Lemaitre M., Carrat F. Comparative age distribution of influenza morbidity and mortality during seasonal influenza epidemics and the 2009 H1N1 pandemic //BMC infectious diseases. – 2010. – Т. 10. – С. 1-5. URL: http://doi.org/10.1016/j.jcrc.2011.05.016.

2. Troeger C. E. et al. Mortality, morbidity, and hospitalisations due to influenza lower respiratory tract infections, 2017: an analysis for the Global Burden of Disease Study 2017 //The Lancet respiratory medicine. – 2019. – Т. 7. – №. 1. – С. 69-89. URL: http://doi.org/10.1016/S2213-2600(18)30496-X.

3. Marchenko V.A., Zhilinskaya I.N. Endothelial activation and dysfunction caused by influenza A virus (Alphainfluenzavirus influenzae). Problems of Virology (Voprosy Virusologii). 2024; 69(6): 465–478 (in Russian). URL: http://doi.org/10.36233/0507-4088-264.

4. Armstrong S. M., Darwish I., Lee W. L. Endothelial activation and dysfunction in the pathogenesis of influenza A virus infection //Virulence. – 2013. – Т. 4. – №. 6. – С. 537-542. URL: http://doi.org/: 10.4161/viru.25779.

5. Short K. R., Kuiken T., Van Riel D. Role of endothelial cells in the pathogenesis of influenza in humans //The Journal of Infectious Diseases. – 2019. – Т. 220. – №. 11. – С. 1859-1860. URL: http://doi.org/10.1093/infdis/jiz349.

6. Filgueiras-Rama D. et al. Human influenza A virus causes myocardial and cardiac-specific conduction system infections associated with early inflammation and premature death //Cardiovascular research. – 2021. – Т. 117. – №. 3. – С. 876-889. URL: http://doi.org/10.1093/cvr/cvaa117.

7. Warren-Gash C. et al. Laboratory-confirmed respiratory infections as triggers for acute myocardial infarction and stroke: a self-controlled case series analysis of national linked datasets from Scotland //European Respiratory Journal. – 2018. – Т. 51. – №. 3. URL: http://doi.org/10.1183/13993003.01794-2017.

8. Ishmurzin G.P. , Serebryakova O.A. , Syuzev K.N. , Dolganova D.A. , Gainullina A.Kh.Cardiovascular complications of respiratory viral infections. The Siberian Journal of Clinicaland Experimental Medicine. 2022;37(4):31–37 (in Russian). URL: http://doi.org/10.29001/2073-8552-2022-37-4-31-37.

9. Kwong J. C. et al. Acute myocardial infarction after laboratory-confirmed influenza infection //New England Journal of Medicine. – 2018. – Т. 378. – №. 4. – С. 345-353. URL: http://doi.org/10.1056/NEJMoa1702090.

10. Chacko B. et al. Cardiac manifestations in patients with pandemic (H1N1) 2009 virus infection needing intensive care //Journal of critical care. – 2012. – Т. 27. – №. 1. – С. 106. e1-106. e6. URL: http://doi.org/10.1016/j.jcrc.2011.05.016.

11. Schrottmaier W. C. et al. Platelets in viral infections–brave soldiers or Trojan horses //Frontiers in Immunology. – 2022. – Т. 13. – С. 856713. URL: http://doi.org/10.3389/fimmu.2022.856713.

12. Chow E. J., Doyle J. D., Uyeki T. M. Influenza virus-related critical illness: prevention, diagnosis, treatment //Critical Care. – 2019. – Т. 23. – С. 1-11. URL: http://doi.org/10.1186/s13054-019-2491-9.

13. Stals M. A. M. et al. Risk of thrombotic complications in influenza versus COVID-19 hospitalized patients //Research and Practice in Thrombosis and Haemostasis. – 2021. – Т. 5. – №. 3. – С. 412-420. URL: http://doi.org/10.1002/rth2.12496.

14. Collins S. D. Excess mortality from causes other than influenza and pneumonia during influenza epidemics //Public Health Reports (1896-1970). – 1932. – С. 2159-2179.

15. Qiu X. et al. Thrombosis in Critically Ill Influenza Patients: Incidence and Risk Factors //Clinical and Applied Thrombosis/ Hemostasis. – 2024. – Т. 30. – С. 10760296241278615. URL: http://doi.org/10.1177/10760296241278615.

16. Chang T. Y. et al. The association between influenza infection, vaccination, and atrial fibrillation: A nationwide case-control study //Heart rhythm. – 2016. – Т. 13. – №. 6. – С. 1189-1194. URL: http://doi.org/10.1016/j.hrthm.2016.01.026.

17. Ukimura A. et al. A national survey on myocarditis associated with the 2009 influenza A (H1N1) pandemic in Japan //Circulation Journal. – 2010. – Т. 74. – №. 10. – С. 2193-2199. URL: http://doi.org/10.1253/circj.cj-10-0452.

18. Ergle K., Gooden J. Y., Ahmed M. M. High-grade atrioventricular block associated with acute influenza //Texas Heart Institute Journal. – 2020. – Т. 47. – №. 3. – С. 220-223. URL: http://doi.org/10.14503/THIJ-18-6658.

19. Fodor A. et al. Endothelial Dysfunction, Inflammation, and Oxidative Stress in COVID-19—Mechanisms and Therapeutic Targets //Oxidative medicine and cellular longevity. – 2021. – Т. 2021. – №. 1. – С. 8671713.

20. McCarthy Z. et al. Modelling the linkage between influenza infection and cardiovascular events via thrombosis //Scientific reports. – 2020. – Т. 10. – №. 1. – С. 14264. URL: http://doi.org/10.1038/s41598-020-70753-0.

21. Wang Z. F. et al. Serum D-dimer changes and prognostic implication in 2009 novel influenza A (H1N1) //Thrombosis research. – 2011. – Т. 127. – №. 3. – С. 198-201. URL: http://doi.org/10.1016/j.thromres.2010.11.032.

22. Jansen A. J. G. et al. Influenza-induced thrombocytopenia is dependent on the subtype and sialoglycan receptor and increases with virus pathogenicity //Blood advances. – 2020. – Т. 4. – №. 13. – С. 2967-2978. URL: http://doi.org/10.1182/bloodadvances.2020001640

23. Li Y. et al. Clinical significance of plasma D-dimer in COVID-19 mortality //Frontiers in Medicine. – 2021. – Т. 8. – С. 638097. URL: http://doi.org/10.3389/fmed.2021.638097.

24. Goshua G. et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study //The Lancet Haematology. – 2020. – Т. 7. – №. 8. – С. e575-e582. URL: http://doi.org/10.1016/S2352-3026(20)30216-7.

25. Fenyves B. G. et al. Plasma P-selectin is an early marker of thromboembolism in COVID-19 //American journal of hematology. – 2021. – Т. 96. – № 12. – С. 468-471. URL: http://doi.org/10.1002/ajh.26372.

26. Bai Y., Guo Y., Gu L. Additional risk factors improve mortality prediction for patients hospitalized with influenza pneumonia: a retrospective, single-center case–control study //BMC Pulmonary Medicine. – 2023. – Т. 23. – №. 1. – С. 19. URL: http://doi.org/10.1186/s12890-022-02283-6.

27. Yamaoka-Tojo M. Vascular endothelial glycocalyx damage in COVID-19 //International journal of molecular sciences. – 2020. – Т. 21. – №. 24. – С. 9712. URL: http://doi.org/10.3390/ijms21249712.

28. Rubino R. et al. Thromboembolic events in patients with influenza: a scoping review //Viruses. – 2022. – Т. 14. – №. 12. – С. 2817. URL: http://doi.org/10.3390/v14122817.

29. Harper P. L. et al. D-dimer concentration increases with age reducing the clinical value of the D-dimer assay in the elderly // Intern Med J. – 2007. – T. 37. – №. 9. – С. 607-13. URL: http://doi.org/10.1111/j.1445-5994.2007.01388.x


Review

For citations:


Nasyrova E.I., Khaertynov Kh.S., Anokhin V.A., Mingazova G.F. Hemostasis in patients with influenza. Journal Infectology. 2025;17(4):79-87. (In Russ.) https://doi.org/10.22625/2072-6732-2025-17-4-79-87

Views: 26


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-6732 (Print)