Preview

Journal Infectology

Advanced search

Multidrug-Resistance of HIV-1 in Adult Patients in Russia in 2024–2025

https://doi.org/10.22625/2072-6732-2025-17-4-6-18

Abstract

The purpose. To assess the prevalence of HIV-1 drug resistance and multidrug resistance to antiretroviral drugs in adult patients with and without treatment experience in Russia in 2024–2025.
Materials and Methods. A total of 1888 plasma samples from adult HIV-infected patients from 21 regions of Russia were analyzed. The average age of the patients was 42,08 years; 60,86% were men and 39,14% were women. 77,65% of patients had information about treatment experience; 28,04% of these patients were treatment-naive and 71,96% were treatment-experienced. Consensus nucleotide sequences of the pol gene, encoding HIV-1 protease, reverse transcriptase, and integrase, were obtained using next-generation sequencing. HIV-1 drug resistance analysis was conducted using the Stanford University HIVdb database.
Results. The most common HIV-1 surveillance mutations were substitutions in the reverse transcriptase – M184V and K103N. In treatment-experienced patients, high levels of HIV-1 resistance were observed to NNRTIs (efavirenz) and NRTIs (lamivudine, abacavir), and in treatment-naive patients – to NNRTIs (efavirenz, nevirapine, rilpivirine). Low levels of HIV-1 resistance were observed to protease and integrase inhibitors, including dolutegravir. The most common combinations of surveillance mutations in treatment-experienced patients were G190S + K101E, G190S + M184V, K65R + M184V, K103N + M184V and G190S + K65R + Y181C. The most common combination of HIV-1 multidrug resistance was NRTI + NNRTI resistance.
Conclusion. Early detection of drug resistance mutations using next-generation sequencing (NGS) followed by quasispecies analysis can significantly change the approach to choosing first- and subsequent-line etiotropic treatment regimens and improve the clinical and cost-effectiveness of HIV-1 treatment.

About the Authors

V. V. Tsvetkov
Research Institute of Influenza named after A.A. Smorodintsev
Russian Federation

Saint-Petersburg



A. B. Komissarov
Research Institute of Influenza named after A.A. Smorodintsev
Russian Federation

Saint-Petersburg



A. E. Masharskiy
Research Institute of Influenza named after A.A. Smorodintsev
Russian Federation

Saint-Petersburg



N. D. Yolshin
Research Institute of Influenza named after A.A. Smorodintsev
Russian Federation

Saint-Petersburg



K. S. Komissarova
Research Institute of Influenza named after A.A. Smorodintsev
Russian Federation

Saint-Petersburg



A. A. Ivanova
Research Institute of Influenza named after A.A. Smorodintsev
Russian Federation

Saint-Petersburg



A. V. Fadeev
Research Institute of Influenza named after A.A. Smorodintsev
Russian Federation

Saint-Petersburg



A. N. Plutnitskiy
Ministry of Health of the Russian Federation
Russian Federation

Moscow



I. B. Kulikova
Ministry of Health of the Russian Federation
Russian Federation

Moscow



N. D. Pakskina
Ministry of Health of the Russian Federation
Russian Federation

Moscow



A. I. Mazus
Moscow City Center for AIDS Prevention and Control
Russian Federation

Moscow



D. A. Lioznov
Research Institute of Influenza named after A.A. Smorodintsev; First Saint-Petersburg State Medical University named after academician I.P. Pavlov University
Russian Federation

Saint-Petersburg



References

1. Keller S. C. et al. Accuracy of definitions for linkage to care in persons living with HIV // JAIDS Journal of Acquired Immune Deficiency Syndromes. – 2013. – T. 63. – №. 5. – S. 622-630. DOI: https://doi.org/10.1097/QAI.0b013e3182968e87

2. Samji H. et al. Closing the gap: increases in life expectancy among treated HIV-positive individuals in the United States and Canada // PloS one. – 2013. – T. 8. – №. 12. – S. E81355. DOI: https://doi.org/10.1371/journal.pone.0081355

3. Dolya VICh-infitsirovannykh lits, poluchayushchikh antiretrovirusnuyu terapiyu, ot chisla sostoyashchikh na dispansernom uchete // Edinaya mezhvedomstvennaya informatsionno-statisticheskaya sistema : [Electronic resource]. – URL: https://www.fedstat.ru/indicator/43860 (date of access: 20.10.2025). [In Russian].

4. Natsional’naya virusologicheskaya assotsiatsiya., Moskovskoe onkologicheskoe obshchestvo. Klinicheskie rekomendatsii. VICh-infektsiya u vzroslykh // Rubrikator klinicheskikh rekomendatsiy : [Electronic resource]. – 22 july 2024. – URL: https://cr.minzdrav.gov.ru/preview-cr/79_2 (date of access: 20.10.2025). [In Russian].

5. Wensing A. M. et al. 2022 update of the drug resistance mutations in HIV-1 // Topics in antiviral medicine. – 2022. – T. 30. – №. 4. – S. 559.

6. Puertas M. C. et al. Pan-resistant HIV-1 emergence in the era of integrase strand-transfer inhibitors: a case report // The Lancet Microbe. – 2020. – Т. 1. – №. 3. – С. e130-e135. DOI: https://doi.org/10.1016/S2666-5247(20)30006-9

7. Galli L. et al. Burden of disease in PWH harboring a multidrug-resistant virus: data from the PRESTIGIO registry // Open Forum Infectious Diseases. – US : Oxford University Press, 2020. – T. 7. – №. 11. – S. ofaa456. DOI: https://doi.org/10.1093/ofid/ofaa456

8. Quinn T. C. HIV epidemiology and the effects of antiviral therapy on long-term consequences // Aids. – 2008. – T. 22. – S. S7-S12. DOI: https://doi.org/10.1097/01.aids.0000327510.68503.e8

9. King J. R. et al. Pharmacokinetic enhancement of protease inhibitor therapy // Clinical pharmacokinetics. – 2004. – T. 43. – №. 5. – S. 291-310. DOI: https://doi.org/10.2165/00003088-200443050-00003

10. Beerenwinkel N. et al. Estimating HIV evolutionary pathways and the genetic barrier to drug resistance // The Journal of infectious diseases. – 2005. – T. 191. – №. 11. – S. 1953-1960.

11. Smirnov N. A. i dr. Vliyanie sotsial’nykh i drugikh faktorov na neblagopriyatnyy iskhod techeniya VICh-infektsii // Sovremennye problemy zdravookhraneniya i meditsinskoy statistiki. – 2025. – №. 1. – S. 607-622. [In Russian]. DOI: https://doi.org/10.24412/2312-2935-2025-1-607-622

12. Bangsberg D. R. et al. A single tablet regimen is associated with higher adherence and viral suppression than multiple tablet regimens in HIV+ homeless and marginally housed people // Aids. – 2010. – T. 24. – №. 18. – S. 2835-2840. DOI: https://doi.org/10.1097/QAD.0b013e328340a209

13. Larder B. Mechanisms of HIV-1 drug resistance // Aids. – 2001. – T. 15. – S. S27-S34.

14. Finzi D. et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy //Science. – 1997. – T. 278. – №. 5341. – S. 1295-1300.

15. Bruner K. M. et al. A quantitative approach for measuring the reservoir of latent HIV-1 proviruses // Nature. – 2019. – T. 566. – №. 7742. – S. 120-125. DOI: https://doi.org/10.1038/s41586-019-0898-8

16. Lucas G. M. et al. Longitudinal assessment of the effects of drug and alcohol abuse on HIV-1 treatment outcomes in an urban clinic // Aids. – 2002. – T. 16. – №. 5. – S. 767-774.

17. Viswanathan S. et al. Adherence and HIV RNA suppression in the current era of highly active antiretroviral therapy // JAIDS Journal of Acquired Immune Deficiency Syndromes. – 2015. – T. 69. – №. 4. – S. 493-498. DOI: https://doi.org/10.1097/QAI.0000000000000643

18. Bennett D. E. et al. HIV drug resistance early warning indicators in cohorts of individuals starting antiretroviral therapy between 2004 and 2009: World Health Organization global report from 50 countries // Clinical infectious diseases. – 2012. – T. 54. – №. suppl_4. – S. S280-S289.

19. Bennett D. E. et al. Drug resistance mutations for surveillance of transmitted HIV-1 drug-resistance: 2009 update // PloS one. – 2009. – T. 4. – №. 3. – S. E4724. DOI: https://doi.org/10.1371/journal.pone.0004724

20. Bailey A. J., Rhee S. Y., Shafer R. W. Integrase Strand Transfer Inhibitor Resistance in Integrase Strand Transfer Inhibitor-Naive Persons // AIDS Res Hum Retroviruses. – 2021. – T. 37. – №. 10. – S. 736-743. DOI: https://doi.org/10.1089/AID.2020.0261

21. Kirichenko A. et al. HIV-1 drug resistance among treatment-naïve patients in Russia: analysis of the national database, 2006–2022 //Viruses. – 2023. – T. 15. – №. 4. – S. 991. DOI: https://doi.org/10.3390/v15040991

22. Kirichenko A. A. et al. Prevalence And Structure Of Hiv-1 Drug Resistance Among Treatment Naïve Patients Since The Introduction Of Antiretroviral Therapy In The Russian Federation // HIV Infection and Immunosuppressive Disorders. – 2019. – T. 11. – №. 2. – S. 75-83. DOI: https://doi.org/10.3390/v15040991

23. Lapovok I. et al. Prevalence of HIV-1 drug resistance mutations among ART-naïve patients in Russia from 2005 to 2015 // 14th European Meeting on HIV & Hepatitis, Rome, Italy. – 2016. – S. 25-27.

24. Wymant C. et al. Easy and accurate reconstruction of whole HIV genomes from short-read sequence data with shiver // Virus evolution. – 2018. – T. 4. – №. 1. – S. vey007. DOI: https://doi.org/10.1093/ve/vey007


Review

For citations:


Tsvetkov V.V., Komissarov A.B., Masharskiy A.E., Yolshin N.D., Komissarova K.S., Ivanova A.A., Fadeev A.V., Plutnitskiy A.N., Kulikova I.B., Pakskina N.D., Mazus A.I., Lioznov D.A. Multidrug-Resistance of HIV-1 in Adult Patients in Russia in 2024–2025. Journal Infectology. 2025;17(4):6-18. (In Russ.) https://doi.org/10.22625/2072-6732-2025-17-4-6-18

Views: 49


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-6732 (Print)