Preview

Journal Infectology

Advanced search

Immune dysregulation in coronavirus infection COVID-19

https://doi.org/10.22625/2072-6732-2025-17-3-24-32

Abstract

Immune dysregulation is one of the main causes of severe coronavirus infection COVID-19. The immune response in COVID-19 is characterized by the activation of innate immune cells and elevated levels of pro-inflammatory cytokines in the blood (tumor necrosis factor alpha, interleukins-1, -6, -8), neutrophils, C-reactive protein and ferritin. Organ dysfunction, including acute respiratory distress syndrome, is associated with cytokine storm. Another important sign of immune dysregulation is lymphopenia, one of the key predictor of the development of severe COVID-19 and poor outcome. One of the main causes of lymphopenia in patients with severe COVID-19 is apoptosis of lymphocytes. The increased proinflammatory cytokines play a critical role in the induction of lymphocytes apoptosis and lymphopenia. The clinical role of lymphocytes apoptosis in COVID-19 is associated with the immunosupression and the opportunistic and secondary infectious diseases. The immunosupression in severe COVID-19 is confirmed by the results of morphological studies demonstrating the depletion of lymphocytes in lymphoid tissue. Next important cause of lymphopenia is lymphocyte sequestration in the lungs. Postmortem studies of the lungs of patients died from COVID-19 show the lymphocytic infiltration. Additionally, lymphopenia may result from impaired lymphopoiesis due to virus-induced damage to lymphocyte precursors in the bone marrow and thymus. In COVID-19 patients, there is a significant reduction in the production of T-cells in the thymus. The decreased thymic function may exacerbate lymphopenia in patients during the acute phase of COVID-19 and prolong the time required for the recovery of circulating T-cell counts.

About the Authors

A. E. Evdokimova
Kazan State Medical University
Russian Federation

Kazan


Competing Interests:

None



Kh. S. Khaertynov
Kazan State Medical University
Russian Federation

Kazan


Competing Interests:

None



V. A. Anokhin
Kazan State Medical University
Russian Federation

Kazan


Competing Interests:

None



I. S. Raginov
Kazan State Medical University; Kazan Federal University (Institute of Fundamental Medicine and Biology)
Russian Federation

Kazan


Competing Interests:

None



References

1. The Johns Hopkins coronavirus resource center. [Internet]. Ongoing Johns Hopkins resources [cited 2025 Feb 10]. Available from: https://coronavirus.jhu.edu.

2. Oboza P., Ogarek N., Olszanecka-Glinianowicz M., Kocelak P. The main causes of death in patients with COVID-19. Eur Rev Med Pharmacol Sci. 2023; 27: 2165-2172. URL: http://doi.org/10.26355/eurrev_202303_31589.

3. Zhang JJ, Dong X, Liu GH, Gao YD. Risk and Protective Factors for COVID 19 Morbidity, Severity, and Mortality. Clinical Reviews in Allergy & Immunology. 2023;64:90-107. URL: http://doi.org/10.1007/s12016-022-08921-5.

4. Poluektova V. B. Possibility of predicting the severity of the course of COVID-19 by clinical and laboratory criteria taking into account the SARS-CoV-2 strain: an analytical review. Epidemiology and Infectious Diseases. 2024; 29(3): 192–203 (in Russian). URL: https://doi.org/10.17816/EID629244.

5. Xia Q, Yang Y, Wang F, et al. Case fatality rates of COVID-19 during epidemic periods of variants of concern: A meta-analysis by continents // Int J Infect Dis. 2024;141:106950. URL: http://doi.org/10.1016/j.ijid.2024.01.017.

6. Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells // Nat Rev Mol Cell Biol. 2022 Jan;23(1):3-20. URL: http://doi.org/10.1038/s41580-021-00418-x.

7. Prevention, diagnosis and treatment of a new coronavirus infection (COVID-19). Temporary methodological recommendations of the Ministry of Health of the Russian Federation, version 18 (26.10.2023), 250 p (in Russian).

8. Hu Ch AA, Murphy I, Klimaj S, et al. SARS-CoV-2, inflammatory apoptosis, and cytokine storm syndrome. Open COVID Journal. 2021;1:22-31. http://doi.org/10.2174/2666958702101010022

9. Castelli V, Cimini A, Ferri C. Cytokine storm in COVID-19: When you come out of the storm, you won’t be the same person who walked in. Front Immunol. 2020;11:2132. URL: http://doi.org/10.3389/fimmu.2020.02132

10. Fajgenbaum DC, June CH. Cytokine Storm. N Engl J Med. 2020; 383(23): 2255-2273. URL: http://doi.org/10.1056/NEJMra2026131.

11. Pelaia C, Tinello C, Vatrella A, et al. Lung under attack by COVID-19-induced cytokine storm: pathogenic mechanisms and therapeutic implications. Ther Adv Respir Dis. 2020;14:1753466620933508. URL: http://doi.org/10.1177/1753466620933508

12. Lavillegrand JR, Garnier M, Spaeth A, et al. Elevated plasma IL-6 and CRP levels are associated with adverse clinical outcomes and death in critically ill SARS-CoV-2 patients: inflammatory response of SARS-CoV-2 patients. Ann. Intensive Care. 2021;11:9. URL: http://doi.org/10.1186/s13613-020-00798-x.

13. Bobkova S. S. Critical analysis of the concept of ‘cytokine storm’ in patients with a new coronavirus infection COVID-19. Literature review. Intensive Care Journal named after A.I. Saltanov. 2021;1:57-68 (in Russian). URL: http://doi.org/10.1186/s12879-021-05839-9.

14. Karawajczyk M, Douhan Hakansson L, Lipcsey M, et al. High expression of neutrophil and monocyte CD64 with simultaneous lack of upregulation of adhesion receptors CD11b, CD162, CD15, CD65 on neutrophils in severe COVID-19. Therapeutic Advances in Infectious Disease. 2021;8:1-13. URL: http://doi.org/10.1177/20499361211034065.

15. Zuo Y, Yalavarthi S, Shi H, et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020;5(11):e138999. URL: http://doi.org/10.1172/jci.insight.138999.

16. Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004; 303(5663): 1532-5. URL: http://doi.org/10.1126/science.1092385.

17. Zhu Y, Chen X, Liu X. NETosis and Neutrophil Extracellular Traps in COVID-19: Immunothrombosis and Beyond. Front Immunol. 2022;13:838011. URL: http://doi.org/10.3389/fimmu.2022.838011.

18. Janiuk K, Jabłońska E, Garley M. Significance of NETs formation in COVID-19. Cells. 2021;10(1):151. URL: http://doi.org/10.3390/cells10010151.

19. Cavalcante-Silva LHA, Carvalho DCM, Lima EA, et al. Neutrophils and COVID-19: The road so far. Int Immunopharmacol. 2021 Jan;90:107233. URL: http://doi.org/

20. Laridan E, Martinod K, De Meyer SF. Neutrophil Extracellular Traps in Arterial and Venous Thrombosis. Semin Thromb Hemost. 2019 Feb;45(1):86-93. URL: http://doi.org/10.1055/s-0038-1677040.

21. Martinod K, Wagner DD. Thrombosis: tangled up in NETs. Blood. 2014 May 1;123(18):2768-2776. URL: http://doi.org/10.1182/blood-2013-10-463646.

22. Zuo Y, Yalavarthi S, Shi H, et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020 Jun;5(11):e138999. URL: http://doi.org/10.1172/jci.insight.138999.

23. Rimmele T, Payen D, Cantaluppi V, et al. Immune cell phenotype and function in sepsis. Shock. 2016 Mar; 45(3):282-91. URL: http://doi.org/10.1097/SHK.0000000000000495.

24. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020 Feb; 395(10223): 497-506. URL: http://doi.org/10.1016/S0140-6736(20)30252-X.

25. Jafarzadeh A, Jafarzadeh S, Nozari P, et al. Lymphopenia an important immunological abnormality in patients with covid-19: possible mechanisms. Scand J Immunol. 2021;93:e12967. URL: http://doi.org/10.1111/sji.12967.

26. Scalia G, Raia M, Gelzo M, et al. Lymphocyte Population Changes at Two Time Points during the Acute Period of COVID-19 Infection. J. Clin. Med. 2022;11:4306. URL: http://doi.org/10.3390/jcm11154306.

27. Zhao Q, Meng M, Kumar R, et al. Lymphopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A systemic review and meta-analysis. International Journal of Infectious Diseases. 2020;96:131–135. URL: http://doi.org/10.1016/j.ijid.2020.03.017.

28. Warny M, Helby J, Nordestgaard BG, et al. Lymphopenia and risk of infection and infection-related death in 98,344 individuals from a prospective Danish population-based study. PLoS Med. 2018;15(11):e1002685. URL: http://doi.org/10.1371/journal.pmed.1002685.

29. Lee J, Park SS, Kim TY, et al. Lymphopenia as a Biological Predictor of Outcomes in COVID-19 Patients: A Nationwide Cohort Study. Cancers (Basel).2021;13(3):471. URL: http://doi.org/10.3390/cancers13030471.

30. Boomer JS, To K, Chang KC, et al. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA. 2011;306(23):2594-605. URL: http://doi.org/10.1001/jama.2011.1829.

31. López-Collazo E, Avendaño-Ortiz J, Martín-Quirós A, Aguirre LA. Immune Response and COVID-19: A mirror image of Sepsis. Int J Biol Sci. 2020;16(14):2479-2489. URL: http://doi.org/10.7150/ijbs.48400.

32. Wang F, Nie J, Wang H, et al. Characteristics of Peripheral Lymphocyte Subset Alteration in COVID-19 Pneumonia. J Infect Dis. 2020;221(11):1762-9. URL: http://doi.org/10.1093/infdis/jiaa150.

33. Yan V, Chen D, Bigambo FM, et al. Differences of blood cells, lymphocyte subsets and cytokines in COVID-19 patients with different clinical stages: a network meta-analysis. BMC Infectious Diseases. 2021;21:156. URL: http://doi.org/10.1186/s12879-021-05847-9.

34. Diao B, Wang C, Tan Y, et al. Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19). Front. Immunol. 2020;11:827. URL: http://doi.org/10.3389/fimmu.2020.00827.

35. Xu X, Chang XN, Pan HX, et al. Pathological changes of the spleen in ten patients with coronavirus disease 2019 (COVID-19) by postmortem needle autopsy. Zhonghua Bing Li Xue Za Zhi. 2020;49(6):576-582. URL: http://doi.org/10.3760/cma.j.cn112151-20200401-00278.

36. Duan YQ, Xia MH, Ren L, et al. Deficiency of Tfh Cells and Germinal Center in Deceased COVID-19 Patients. Curr Med Sci. 2020;40(4):618-624. URL: http://doi.org/10.1007/s11596-020-2225-x.

37. Kurra N, Woodard PI, Gandrakota N, et al. Opportunistic Infections in COVID-19: A Systematic Review and Meta-Analysis. Cureus. 2022;14(3):e23687. URL: http://doi.org/10.7759/cureus.23687.

38. Guo Z, Zhang Z, Prajapati M, et al. Lymphopenia caused by virus infections and the mechanisms beyond. Viruses. 2021; 13: 1876. URL: http://doi.org/10.3390/v13091876.

39. Ren X, Wen W, Fan X, et al. COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas. Cell. 2021; 184(7):1895-1913. URL: http://doi.org/10.1016/j.cell.2021.01.053.

40. Shen XR, Geng R, Li Q, et al. ACE2-independent infection of T lymphocytes by SARS-CoV-2. Signal Transduct Target Ther. 2022;7:83. URL: http://doi.org/10.1038/s41392-022-00919-x.

41. Wang K, Chen W, Zhang Z, et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct Target Ther. 2020;5(1):283. URL: http://doi.org/10.1038/s41392-020-00426-x.

42. Taghiloo S, Aliyali M, Abedi S, et al. Apoptosis and immunophenotyping of peripheral blood lymphocytes in Iranian COVID-19 patients: Clinical and laboratory characteristics. J Med Virol. 2021;93(3):1589–1598. URL: http://doi.org/10.1002/jmv.26505.

43. Khaertynov H.S. Apoptosis of lymphocytes in patients with coronavirus infection COVID-19. Kazan Medical Journal. 2024; 105(6):926–935 (in Russian). URL: https://doi.org/10.17816/KMJ633257.

44. Gupta S. Tumor necrosis factor-alpha-induced apoptosis in T cells from aged humans: A role of TNFR-I and downstream signaling molecules. Exp Gerontol. 2002;37(2–3):293-299. http://doi.org/10.1016/s0531-5565(01)00195-4.

45. Choi C, Park JY, Lee J, et al. Fas ligand and Fas are expressed constitutively in human astrocytes and the expression increases with IL-1, IL6, TNF-alpha, or IFN-gamma. J Immunol. 1999;162:1889-1895.

46. Giamarellos-Bourboulis EJ, Netea MG, Rovina N, et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe. 2020;27:992-1000. URL: http://doi.org/10.1016/j.chom.2020.04.009.

47. André S, Picard M, Cezar R, et al. T cell apoptosis characterizes severe COVID-19 disease. Cell Death Differ. 2022;29(8):1486-1499. URL: http://doi.org/10.1038/s41418-022.

48. Elmore S. Apoptosis: A review of programmed cell death. Toxicol Pathol. 2007;35(4):495-516. http://doi.org/10.1080/01926230701320337.

49. Ren Y, Shu T, Wu D, et al. The ORF3a protein of SARS-CoV-2 induces apoptosis in cells. Cell Mol Immunol. 2020;17:881–883. URL: http://doi.org/10.1038/s41423-020-0485-9.

50. Xiang Q, Feng Z, Diao B, et al. SARS-CoV-2 induces lymphocytopenia by promoting inflammation and decimates secondary lymphoid organs. Front. Immunol. 2021;12:661052. http://doi.org/10.3389/fimmu.2021.661052.

51. Tong X, Ping H, Gong X, et al. Pyroptosis in the lung and spleen of patients died from COVID-19. European Journal of Inflammation. 2022;20:1-12. URL: http://doi.org/10.1177/1721727X221140661.

52. Wang M, Chang W, Zhang L. Pyroptotic cell death in SARS-CoV-2 infection: revealing its roles during the immunopathogenesis of COVID-19. Int J Biol Sci. 2022;18(15):5827-5848. doi: 10.7150/ijbs.77561. URL: http://doi.org/10.7150/ijbs.77561.

53. Tang Y, Zhang P, Liu Q, et al. Pyroptotic Patterns in Blood Leukocytes Predict Disease Severity and Outcome in COVID-19 Patients. Front. Immunol. 2022;13:888661. URL: http://doi.org/10.3389/fimmu.2022.888661.

54. Junqueira C, Crespo A, Ranjbar S, et al. FcgammaR-mediated SARS-CoV-2 infection of monocytes activates inflammation. Nature. 2022;606:576-84. URL: http://doi.org/10.1038/s41586-022-04702-4.

55. Zhang J, Wu H, Yao X, et al. Pyroptotic macrophages stimulate the SARS-CoV-2-associated cytokine storm. Cellular & molecular immunology. 2021; 18: 1305-1307. URL: http://doi. org/

56. Poloni TE, Moretti M, Medici V, et al. COVID-19 Pathology in the Lung, Kidney, Heart and Brain: The Different Roles of T-Cells, Macrophages, and Microthrombosis. Cells. 2022;11(19):3124. http://doi.org/10.3390/cells11193124.

57. Deshmane SL, Kremlev S, Amini S, Sawaya B. Monocyte Chemoattractant Protein-1 (MCP-1): An Overview. J Interferon Cytokine Res. 2009;29(6):313-326. URL: http://doi.org/10.1089/jir.2008.0027.

58. Boechat JL, Chora I, Morais A, Delgado L. The immune response to SARS-CoV-2 and COVID-19 immunopathology. Current perspectives. Pulmonology. 2021; 27(5): 423-437. URL: http://doi.org/10.1016/j.pulmoe.2021.03.008.

59. Khadzhieva MB, Kalinina EV, Larin SS, et al. TREC/ KREC Levels in Young COVID-19 Patients. Diagnostics. 2021; 11: 1486. URL: http://doi.org/10.3390/diagnostics11081486.

60. Savchenko AA, Tikhonova E, Kudryavtsev I, et al. TREC/ KREC Levels and T and B Lymphocyte Subpopulations in COVID-19 Patients at Different Stages of the Disease. Viruses. 2022; 14: 646. URL: https://doi.org/10.3390/v14030646

61. Rosichini M, Bordoni V, Silvestris DF, et al. SARS-CoV-2 infection of thymus induces loss of function that correlates with disease severity. J Allergy Clin Immunol. 2023; 151(4): 911-921. URL: http://doi.org/10.1016/j.jaci.2023.01.022.


Review

For citations:


Evdokimova A.E., Khaertynov Kh.S., Anokhin V.A., Raginov I.S. Immune dysregulation in coronavirus infection COVID-19. Journal Infectology. 2025;17(3):24-32. (In Russ.) https://doi.org/10.22625/2072-6732-2025-17-3-24-32

Views: 11


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-6732 (Print)