Preview

Journal Infectology

Advanced search

Botulism: new data on pathogenesis, nearest outcomes and distant consequences of the disease

https://doi.org/10.22625/2072-6732-2025-17-2-5-20

Abstract

At present, at least two postulates are axiomatic in relation to the peculiarities of the course of foodborne botulism: botulism is an acute disease and does not turn into a chronic form, and that botulism does not cause persistent residual effects, and its clinical manifestations are reversible and do not lead to disability. However, if the first postulate does not raise objections, then the data of recent decades show that foodborne botulism, at least type A, being a disease of toxic genesis with almost single and simultaneous exposure to botulinum neurotoxin (BnT), can manifest itself for a long-term, up to 7 months or more, persistence of neurological symptoms with a natural decrease in working capacity. This state of affairs is due to the escape of the Type A light chain BcT from the influence of the ubiquitin-proteasome system, designed to destroy foreign proteins in the cell that enter the cytosol.
We analyzed in detail the dynamics of the reverse development of the clinical picture of botulism type A in 97 patients from the moment of their hospitalization to the 7th month from the onset of the disease, among whom there were 59 patients with the initially severe course of botulism. There were 38 patients with a moderate course of the process. Patients received conventional therapy for botulism, including mandatory administration of 1 dose of intravenous antibotulinum serum. In 56 patients, for the purpose of nonspecific detoxification and restoration of intestinal propulsion function, the administration of saline enteral solution was added to the complex therapy at the hospital stage of treatment.
After 7 months, 34 out of 59 patients with severe forms of botulism (55.9%) and 27 out of 38 patients with a moderate course of the disease (77.1%) considered themselves fully recovered. Residual effects (persistent weakness, near vision impairment and other complaints that the patients associated with the hospital stage of the disease) occurred in 25 patients with severe forms of botulism and in 11 patients with moderate-severe forms of the disease.
It is concluded that the use of saline enteral solution (SAS) significantly reduces the time of repair, but it is not a panacea – the situation urgently requires not only the development of radically new approaches to treatment (including at the molecular level), but also the streamlining of the corresponding stages of dispensary observation and rehabilitation measures.

About the Authors

V. V. Nikiforov
Russian National Research Medical University named after N.I. Pirogov; Infectious Clinical Hospital № 1; Academy of Postgraduate Education of Federal Scientific and Clinical Center for Specialized Types of Medical Assistance and Medical Technologies
Russian Federation

Moscow



A. V. Kozhevnikova
Russian National Research Medical University named after N.I. Pirogov; Infectious Clinical Hospital № 1
Russian Federation

Moscow



References

1. Krüger M, Große-Herrenthey A, Schrödl W, Gerlach A, Rodloff A. Visceral botulism at dairy farms in Schleswig Holstein, Germany: prevalence of Clostridium botulinum in feces of cows, in animal feeds, in feces of the farmers, and in house dust. Anaerobe. 2012 Apr;18(2):221-3. doi: 10.1016/j.anaerobe.2011.12.013. Epub 2011 Dec 21. PMID: 22200452.

2. Rodloff AC, Krüger M. Chronic Clostridium botulinum infections in farmers. Anaerobe. 2012 Apr;18(2):226-8. doi: 10.1016/j.anaerobe.2011.12.011. Epub 2011 Dec 22. PMID: 22197952.

3. Botulizm / V. V. Nikiforov. — Sankt-Peterburg: Eko-Vektor, 2024. — 528 s.: il. — https://doi.org/10.17816/b.bot2023

4. Nikiforov V.V., Tomilin Yu.N., Davydov A.V., Zimin P.E., Alejnikova O.I. Sluchaj tyazhelogo techeniya botulizma: 127 dnej iskusstvennoj ventilyacii legkih. Epidemiologiya i infekcionnye bolezni, 2013, № 6, S. 49 – 57

5. Shoemaker CB, Oyler GA (2013) Persistence of Botulinum neurotoxin inactivation of nerve function. Curr Top Microbiol Immunol 364:179-196.

6. Ambache N. The peripheral action of Cl. botulinum toxin. J Physiol. 1949 Mar 15;108(2):127-41. PMID: 16991844; PMCID: PMC1392364.

7. Berg J. M., John L. Tymoczko, Gregory J. Gatto Jr., Stryer L. Biochemistry. 6th ed.,Edition Medicine- Sciences Flammarion, 2006. P. 882–883.

8. fr.wikipedia.org›SNARE https://fr.wikipedia.org/wiki/SNARE, 2022

9. Montecucco C, Papini E, Schiavo G. Bacterial protein toxins penetrate cells via a four-step mechanism. FEBS Lett. 1994 Jun 6;346(1):92-8. doi: 10.1016/0014-5793(94)00449-8. PMID: 8206166.

10. Shi YL, Hu Q. Progress on study of mechanism of botulinum neurotoxin action. (in Chinese with English abstract). Prog Biochem Biophys. 1998; 25: 126-30.

11. Schiavo G, Matteoli M, Montecucco C. Neurotoxins affecting neuroexocytosis. Physiol Rev 2000; 80: 717-66.

12. Schiavo G, Benfenati F, Poulain B, Rossetto O, Polverino de Laureto P, DasGupta BR, Montecucco C. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature. 1992 Oct 29;359(6398):832-5. doi: 10.1038/359832a0. PMID: 1331807.

13. Yamasaki S, Hu Y, Binz T, Kalkuhl A, Kurazono H, Tamura T, Jahn R, Kandel E, Niemann H. Synaptobrevin/vesicle-associated membrane protein (VAMP) of Aplysia californica: structure and proteolysis by tetanus toxin and botulinal neurotoxins type D and F. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4688-92. doi: 10.1073/pnas.91.11.4688. PMID: 8197120; PMCID: PMC43853.

14. Schiavo, G., C. C. Shone, O. Rossetto, F. C. alexander, C. Montecucco. Botulinum neurotoxin serotype F is a zinc endopeptidase specific for VAMP/synaptobrevin. J. Biol. Chem. 268: 11516–11519, 1993.

15. Schiavo G, Malizio C, Trimble WS, Polverino de Laureto P, Milan G, Sugiyama H, Johnson EA, Montecucco C. Botulinum G neurotoxin cleaves VAMP/synaptobrevin at a single Ala-Ala peptide bond. J Biol Chem. 1994 Aug 12;269(32):20213-6. PMID: 8051110.

16. Blasi J, Chapman ER, Link E, Binz T, Yamasaki S, De Camilli P, Südhof TC, Niemann H, Jahn R. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature. 1993 Sep 9;365(6442):160-3. doi: 10.1038/365160a0. PMID: 8103915.

17. Binz T, Blasi J, Yamasaki S, Baumeister A, Link E, Südhof TC, Jahn R, Niemann H. Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. J Biol Chem. 1994 Jan 21;269(3):1617-20. PMID: 8294407.

18. Blasi J, Chapman ER, Yamasaki S, Binz T, Niemann H, Jahn R. Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC-1/syntaxin. Eur Mol Biol Org J 1993; 12: 4821-8.

19. Eleopra R, Tugnoli V, Rossetto O, De Grandis D, Montecucco C. Different time courses of recovery after poisoning with botulinum neurotoxin serotypes A and E in humans. Neurosci Lett. 1998 Nov 13;256(3):135-8. doi: 10.1016/s0304-3940(98)00775-7. PMID: 9855358.

20. De Paiva A, Meunier FA, Molgó J, et al. Functional repair of motor endplates after botulinum neurotoxin type А poisoning: biphasic switch of synaptic activity between nerve sprouts and their parent terminals. Proc Nat Acad Sci. 1999;96(6):3200–3205.

21. Holland RL, Brown MC. Nerve growth in botulinum toxin poisoned muscles. Neuroscience. 1981;6 (6):1167–1179.

22. Adler M, Franz DR. Toxicity of botulinum neurotoxin by inhalation: implications in bioterrorism. In: Salem H, Katz S, editors. Aerobiology: the Toxicology of Airborne Pathogens and Toxins. Cambridge, U.K: Royal Society of Chemistry; 2016. pp. 167–185.

23. Meunier FA, Schiavo G, Molgü J. Botulinum neurotoxins: from paralysis to recovery of functional neuromuscular transmission. J Physiol Paris. 2002;96(1–2):105–113.

24. Tsai YC, Maditz R, Kuo CL, Fishman PS, Shoemaker CB, Oyler GA, Weissman AM. Targeting botulinum neurotoxin persistence by the ubiquitin-proteasome system. Proc Natl Acad Sci U S A. 2010 Sep 21;107(38):16554-9. doi: 10.1073/pnas.1008302107. Epub 2010 Sep 7. PMID: 20823219; PMCID: PMC2944746.

25. Tsai YC, Kotiya A, Kiris E, Yang M, Bavari S, Tessarollo L, Oyler GA, Weissman AM. Deubiquitinating enzyme VCIP135 dictates the duration of botulinum neurotoxin type A intoxication. Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):E5158-E5166. doi: 10.1073/pnas.1621076114. Epub 2017 Jun 5. PMID: 28584101; PMCID: PMC5495235.

26. Tanec znamenij: ubikvitin i proteasoma v sud’be vnutrikletochnyh belkovhttps://biomolecula.ru/articles/tanetsznamenii-ubikvitin-i-proteasoma-v-sudbe-vnutrikletochnykhbelkov 27. Kwon YT, Ciechanover A. The Ubiquitin Code in the Ubiquitin-Proteasome System and Autophagy. Trends Biochem Sci. 2017 Nov;42(11):873-886. doi: 10.1016/j.tibs.2017.09.002. Epub 2017 Sep 22. PMID: 28947091.

27. Nandi D, Tahiliani P, Kumar A, Chandu D. The ubiquitin-proteasome system. J Biosci. 2006 Mar;31(1):137-55. doi: 10.1007/BF02705243. PMID: 16595883.

28. Ubikvitin-proteasomnyj put’ raspada belkovhttps://meduniver.com/Medical/Physiology/ubikvitin-proteasomnii_put_raspada_belkov.html

29. Kleiger G, Mayor T. Perilous journey: a tour of the ubiquitin-proteasome system. Trends Cell Biol. 2014 Jun;24(6):352-9. doi: 10.1016/j.tcb.2013.12.003. Epub 2014 Jan 20. PMID: 24457024; PMCID: PMC4037451.

30. Kirandeep K. Deol, Sonja Lorenz, Eric R. Strieter. (2019). Enzymatic Logic of Ubiquitin Chain Assembly. Front. Physiol. 10; https://doi.org/10.3389/fphys.2019.00835

31. Yang Q, Zhao J, Chen D, Wang Y. E3 ubiquitin ligases: styles, structures and functions. Mol Biomed. 2021 Jul 30;2(1):23. doi: 10.1186/s43556-021-00043-2. PMID: 35006464; PMCID: PMC8607428.

32. Fang YZ, Jiang L, He Q, Cao J, Yang B. Deubiquitination complex platform: A plausible mechanism for regulating the substrate specificity of deubiquitinating enzymes. Acta Pharm Sin B. 2023 Jul;13(7):2955-2962. doi: 10.1016/j.apsb.2023.02.019. Epub 2023 Mar 4. PMID: 37521861; PMCID: PMC10372820.

33. Voges D, Zwickl P, Baumeister W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem. 1999;68:1015-68. doi: 10.1146/annurev.biochem.68.1.1015. PMID: 10872471.

34. U. I. Podenkova, I. V. Zubarev, A. N. Tomilin, A. S. Cimoha Ubikvitin-proteasomnaya sistema v regulyacii kletochnoj plyuripotentnosti i differencirovki. Citologiya, 2023, tom 65 № 3 s. 232-245.

35. MLA style: The Nobel Prize in Chemistry 2004. NobelPrize.org. Nobel Prize Outreach 2025. Wed. 29 Jan 2025. https://www.nobelprize.org/prizes/chemistry/2004/summary/

36. Shoemaker CB, Oyler GA (2013) Persistence of Botulinum neurotoxin inactivation of nerve function. Curr Top Microbiol Immunol 364:179-196.

37. Rossetto, O., Pirazzini, M. & Montecucco, C. Botulinum neurotoxins: genetic, structural and mechanistic insights. Nat Rev Microbiol 12, 535–549 (2014). https://doi.org/10.1038/nrmicro3295

38. Pantano S, Montecucco C. The blockade of the neurotransmitter release apparatus by botulinum neurotoxins. Cell Mol Life Sci. 2014 Mar;71(5):793-811. doi: 10.1007/s00018-013-1380-7. Epub 2013 Jun 11. PMID: 23749048; PMCID: PMC11113401

39. Keller JE, Neale EA, Oyler G, Adler M. Persistence of botulinum neurotoxin action in cultured spinal cord cells. FEBS Lett. 1999 Jul 30;456(1):137-42. doi: 10.1016/s0014-5793(99)00948-5. PMID: 10452545.

40. Whitemarsh RC, Tepp WH, Johnson EA, Pellett S (2014) Persistence of botulinum neurotoxin a subtypes 1-5 in primary rat spinal cord cells. PLoS One 9:e90252. https://doi.org/10.1371/j

41. Binz T, Blasi J, Yamasaki S, Baumeister A, Link E, Südhof TC, Jahn R, Niemann H. Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. J Biol Chem. 1994 Jan 21;269(3):1617-20. PMID: 8294407.

42. Rawson AM, Dempster AW, Humphreys CM, Minton NP. Pathogenicity and virulence of Clostridium botulinum. Virulence. 2023 Dec;14(1):2205251. doi: 10.1080/21505594.2023.2205251. PMID: 37157163; PMCID: PMC10171130.

43. Sen E, Kota KP, Panchal RG, et al. Screening ofa Focused Ubiquitin-Proteasome Pathway Inhibitor Library Identifies Small Molecules as Novel Modulators of Botulinum Neurotoxin Type А Toxicity. Front Pharmacol. 2021;12:2659.

44. Ministerstvo Zdravoohraneniya Rossijskoj Federacii. Metodicheskie rekomendacii. Diagnostika i lechenie botulizma. //epid.gcgie.ru›documents/2_5370607684523413139.pdf

45. Instrukciya po primeneniyu. Specializirovannyj pishchevoj produkt dieticheskogo lechebnogo pitaniya. Nabor koncentratov dlya prigotovleniya specializirovannogo pishchevogo produkta dieticheskogo lechebnogo pitaniya (enteral’nogo pitaniya) «SER» (solevoj enteral’nyj rastvor) Svidetel’stvo o gosudarstvennoj registracii № RU.77.99.32.004.R.000813.03.22 ot 17.03.2022 g.

46. Morrison V.V., Perepelov V.I. Gistohimicheskaya harakteristika bystryh i medlennyh myshc pri mestnom botulizme. – Trudy Saratovsk. med. in-ta, 1978, t. 98, s. 58-61.

47. Chesnokova N.P., Astaf’eva O.G. K mekhanizmu narusheniya energeticheskogo obmena myshc pri botulinicheskoj intoksikacii. – Vopr.med.himii, 1980, tom 26, vyp. 1, s. 32-36.


Review

For citations:


Nikiforov V.V., Kozhevnikova A.V. Botulism: new data on pathogenesis, nearest outcomes and distant consequences of the disease. Journal Infectology. 2025;17(2):5-20. (In Russ.) https://doi.org/10.22625/2072-6732-2025-17-2-5-20

Views: 46


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-6732 (Print)