Современные подходы к иммунотерапии инфекции Clostridioides difficile
https://doi.org/10.22625/2072-6732-2023-15-4-35-41
Аннотация
Clostridioides difficile является основной причиной диареи и псевдомембранозного колита, ассоциированных с терапией антибиотиками. Гипервирулентные штаммы C. difficile, такие как риботип 027, характеризуются высоким уровнем смертности. Рецидивирующая инфекция C. difficile крайне трудно поддается лечению. Симптомы заболевания провоцируют 2 токсина, TcdA и TcdB. Эти токсины являются мишенями для терапевтических антител. Одобренное для профилактики рецидивирующей инфекции C. difficile моноклональное антитело безлотоксумаб (Zinplava ©, Merck & Co. Inc., США), специфичное к TcdB, обладает определенной эффективностью в отношении ограниченного набора штаммов C. difficile. Обладая меньшей по сравнению с моноклональными антителами себестоимостью, высокой аффинностью к антигену и уникальными структурно-функциональными свойствами, наноантитела являются перспективной стратегией иммунотерапии заболеваний, связанных с C. difficile.
Ключевые слова
Об авторах
К. Э. ПопругаРоссия
Попруга Катерина Эдуардовна – аналитик 2-й категории отдела анализа и прогнозирования медико-биологических рисков здоровью; тел.: 8(495)540-61-75 доб. 4517
Москва
В. В. Макаров
Россия
Макаров Валентин Владимирович – заместитель директора Института синтетической биологии и генной инженерии по научно-экспериментальной работе, к.б.н.; тел.: 8(495)540-61-75 доб. 4004
Москва
Список литературы
1. Buddle J.E., Fagan R.P. Pathogenicity and virulence of Clostridioides difficile // Virulence. 2023. Vol. 14, № 1.
2. Hota S.S. et al. Determining Mortality Rates Attributable to Clostridium difficile Infection // Emerg. Infect. Dis. 2012. Vol. 18, № 2. P. 305–307.
3. Czepiel J. et al. Clostridium difficile infection: review // Eur. J. Clin. Microbiol. Infect. Dis. 2019. Vol. 38, № 7. P. 1211–1221.
4. Dobson G., Hickey C., Trinder J. Clostridium difficile colitis causing toxic megacolon, severe sepsis and multiple organ dysfunction syndrome // Intensive Care Med. 2003. Vol. 29, № 6. P. 1030–1030.
5. Guery B. Clostridium difficile infection trials: what is the primary endpoint? // Lancet Infect. Dis. 2019. Vol. 19, № 3. P. 219–220.
6. Bartlett J.G. Narrative Review: The New Epidemic of Clostridium difficile –Associated Enteric Disease // Ann. Intern. Med. 2006. Vol. 145, № 10. P. 758.
7. Marra A.R. et al. Incidence and Outcomes Associated With Clostridium difficile Infections // JAMA Netw. Open. 2020. Vol. 3, № 1. P. e1917597.
8. Hall A.J. et al. The Roles of Clostridium difficile and Norovirus Among Gastroenteritis-Associated Deaths in the United States, 1999–2007 // Clin. Infect. Dis. 2012. Vol. 55, № 2. P. 216–223.
9. Dubberke E.R., Olsen M.A. Burden of Clostridium difficile on the Healthcare System // Clin. Infect. Dis. 2012. Vol. 55, № suppl_2. P. S88–S92.
10. Филь Т.С. Стратификация факторов риска развития антибиотикоассоциированной диареи: автореф. дис. ... канд. наук 2017.
11. Nikolaeva I. V. et al. Clostridioides (Clostridium) difficile infection. Review of current clinical guidelines // Pract. Med. 2020. Vol. 18, № 6. P. 106–112.
12. Hensgens M.P.M. et al. Time interval of increased risk for Clostridium difficile infection after exposure to antibiotics // J. Antimicrob. Chemother. 2012. Vol. 67, № 3. P. 742–748.
13. Theriot C.M., Young V.B. Interactions Between the Gastrointestinal Microbiome and Clostridium difficile // Annu. Rev. Microbiol. 2015. Vol. 69, № 1. P. 445–461.
14. Theriot C.M. et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection // Nat. Commun. 2014. Vol. 5, № 1. P. 3114.
15. Owens, Jr. R.C. et al. Antimicrobial-Associated Risk Factors for Clostridium difficile Infection // Clin. Infect. Dis. 2008. Vol. 46, № s1. P. S19–S31.
16. Surawicz C.M. et al. Guidelines for Diagnosis, Treatment, and Prevention of Clostridium difficile Infections // Am. J. Gastroenterol. 2013. Vol. 108, № 4. P. 478–498.
17. Debast S.B., Bauer M.P., Kuijper E.J. European Society of Clinical Microbiology and Infectious Diseases: Update of the Treatment Guidance Document for Clostridium difficile Infection // Clin. Microbiol. Infect. 2014. Vol. 20. P. 1–26.
18. McFarland L. V. et al. Recurrent Clostridium Difficile Disease: Epidemiology and Clinical Characteristics // Infect. Control Hosp. Epidemiol. 1999. Vol. 20, № 01. P. 43–50.
19. Ghantoji S.S. et al. Economic healthcare costs of Clostridium difficile infection: a systematic review // J. Hosp. Infect. 2010. Vol. 74, № 4. P. 309–318.
20. Kuehne S.A. et al. The role of toxin A and toxin B in Clostridium difficile infection // Nature. 2010. Vol. 467, № 7316. P. 711–713.
21. Aktories K. Bacterial protein toxins that modify host regulatory GTPases // Nat. Rev. Microbiol. 2011. Vol. 9, № 7. P. 487–498.
22. Pruitt R.N. et al. Structural organization of the functional domains of Clostridium difficile toxins A and B // Proc. Natl. Acad. Sci. 2010. Vol. 107, № 30. P. 13467–13472.
23. Kordus S.L., Thomas A.K., Lacy D.B. Clostridioides difficile toxins: mechanisms of action and antitoxin therapeutics // Nat. Rev. Microbiol. 2022. Vol. 20, № 5. P. 285–298.
24. Chen P. et al. Structural basis for CSPG4 as a receptor for TcdB and a therapeutic target in Clostridioides difficile infection // Nat. Commun. 2021. Vol. 12, № 1. P. 3748.
25. Kyne L. et al. Asymptomatic Carriage of Clostridium difficile and Serum Levels of IgG Antibody against Toxin A // N. Engl. J. Med. 2000. Vol. 342, № 6. P. 390–397.
26. Kyne L. et al. Association between antibody response to toxin A and protection against recurrent Clostridium difficile diarrhoea // Lancet. 2001. Vol. 357, № 9251. P. 189–193.
27. Leav B.A. et al. Serum anti-toxin B antibody correlates with protection from recurrent Clostridium difficile infection (CDI) // Vaccine. 2010. Vol. 28, № 4. P. 965–969.
28. Raeisi H. et al. Application of recombinant antibodies for treatment of Clostridioides difficile infection: Current status and future perspective // Front. Immunol. 2022. Vol. 13.
29. Wilcox M.H. et al. Bezlotoxumab for Prevention of Recurrent Clostridium difficile Infection // N. Engl. J. Med. 2017. Vol. 376, № 4. P. 305–317.
30. Rupnik M. Heterogeneity of large clostridial toxins: importance of Clostridium difficile toxinotypes // FEMS Microbiol. Rev. 2008. Vol. 32, № 3. P. 541–555.
31. Shen E. et al. Subtyping analysis reveals new variants and accelerated evolution of Clostridioides difficile toxin B // Commun. Biol. 2020. Vol. 3, № 1. P. 347.
32. Hernandez L.D. et al. Broad Coverage of Genetically Diverse Strains of Clostridium difficile by Actoxumab and Bezlotoxumab Predicted by In Vitro Neutralization and Epitope Modeling // Antimicrob. Agents Chemother. 2015. Vol. 59, № 2. P. 1052–1060.
33. Orrell K.E., Melnyk R.A. Large Clostridial Toxins: Mechanisms and Roles in Disease // Microbiol. Mol. Biol. Rev. 2021. Vol. 85, № 3.
34. Lyras D. et al. Toxin B is essential for virulence of Clostridium difficile // Nature. 2009. Vol. 458, № 7242. P. 1176–1179.
35. Drudy D., Fanning S., Kyne L. Toxin A-negative, toxin B-positive Clostridium difficile // Int. J. Infect. Dis. 2007. Vol. 11, № 1. P. 5–10.
36. Lyerly D.M. et al. Effects of Clostridium difficile toxins given intragastrically to animals // Infect. Immun. 1985. Vol. 47, № 2. P. 349–352.
37. Lee Y. et al. Bezlotoxumab (Zinplava) for Clostridium Difficile Infection: The First Monoclonal Antibody Approved to Prevent the Recurrence of a Bacterial Infection. // P T. 2017. Vol. 42, № 12. P. 735–738.
38. Muyldermans S. Nanobodies: Natural Single-Domain Antibodies // Annu. Rev. Biochem. 2013. Vol. 82, № 1. P. 775–797.
39. Koide A. et al. Exploring the Capacity of Minimalist Protein Interfaces: Interface Energetics and Affinity Maturation to Picomolar KD of a Single-domain Antibody with a Flat Paratope // J. Mol. Biol. 2007. Vol. 373, № 4. P. 941–953.
40. Jovčevska I., Muyldermans S. The Therapeutic Potential of Nanobodies // BioDrugs. 2020. Vol. 34, № 1. P. 11–26.
41. Arbabi-Ghahroudi M., Tanha J., MacKenzie R. Isolation of Monoclonal Antibody Fragments from Phage Display Libraries. 2009. P. 341–364.
42. De Vos J. et al. Camelid single-domain antibody-fragment engineering for (pre)clinical in vivo molecular imaging applications: adjusting the bullet to its target // Expert Opin. Biol. Ther. 2013. Vol. 13, № 8. P. 1149–1160.
43. Arbabi-Ghahroudi M., Tanha J., MacKenzie R. Prokaryotic expression of antibodies // Cancer Metastasis Rev. 2005. Vol. 24, № 4. P. 501–519.
44. Dmitriev O.Y., Lutsenko S., Muyldermans S. Nanobodies as Probes for Protein Dynamics in Vitro and in Cells // J. Biol. Chem. 2016. Vol. 291, № 8. P. 3767–3775.
45. Ackaert C. et al. Immunogenicity Risk Profile of Nanobodies // Front. Immunol. 2021. Vol. 12.
46. Unger M. et al. Selection of Nanobodies that Block the Enzymatic and Cytotoxic Activities of the Binary Clostridium Difficile Toxin CDT // Sci. Rep. 2015. Vol. 5, № 1. P. 7850.
47. Greco A. et al. Carbohydrate recognition by Clostridium difficile toxin A // Nat. Struct. Mol. Biol. 2006. Vol. 13, № 5. P. 460–461.
48. Hussack G. et al. Neutralization of Clostridium difficile Toxin A with Single-domain Antibodies Targeting the Cell Receptor Binding Domain // J. Biol. Chem. 2011. Vol. 286, № 11. P. 8961–8976.
49. Murase T. et al. Structural Basis for Antibody Recognition in the Receptor-binding Domains of Toxins A and B from Clostridium difficile // J. Biol. Chem. 2014. Vol. 289, № 4. P. 2331–2343.
50. Yang Z. et al. A Novel Multivalent, Single-Domain Antibody Targeting TcdA and TcdB Prevents Fulminant Clostridium difficile Infection in Mice // J. Infect. Dis. 2014. Vol. 210, № 6. P. 964–972.
Рецензия
Для цитирования:
Попруга К.Э., Макаров В.В. Современные подходы к иммунотерапии инфекции Clostridioides difficile. Журнал инфектологии. 2023;15(4):35-41. https://doi.org/10.22625/2072-6732-2023-15-4-35-41
For citation:
Popruga K.E., Makarov V.V. Modern approaches to the immunotherapy of Clostridioides difficile. Journal Infectology. 2023;15(4):35-41. (In Russ.) https://doi.org/10.22625/2072-6732-2023-15-4-35-41