Features of the functioning of the innate and adaptive immunity system in patients with COVID-19 of the older age group
https://doi.org/10.22625/2072-6732-2023-15-3-83-91
Abstract
Goal. Characteristics of innate, cellular and adaptive immunity in patients of the older age group with COVID19.
Materials and methods. Blood leukocytes were induced by Newcastle disease virus (α-interferon), phytohemagglutinin (γ-interferon), SARS CoV 2: RBD antigens and S-protein; interferon activity in human fibroblast culture and enzyme immunoassay were evaluated. In serum, IgG antibodies to SARS CoV2 and autoantibodies to interferon and to the endothelium of blood vessels were determined using a mono-layer of human umbilical vein cells. Statistical processing was performed in Excel 2016.
Results. A decrease in the production of α-interferon and γ-interferon was revealed: 1 week -74.2±15.1; 3 week-144.0±35.7 (p=0.01); control – 266.6 ±82 (relative to 3 weeks p=0.004) and IFN γ: 1 week -6.8±2; 3 week – 14.4 ±3.5 (p=0.03); control – 28.87.15 (relative to 3 weeks (p=0.007). Decreased production of γ-interferon by leukocytes of patients with induction by SARS CoV2 RBD and S-trimer anti-gens was revealed. Antibodies to SARS CoV2 were detected starting from the 2nd week of the disease, a large spread of indicators was noted. Autoantibodies to α2-interferon and to vascular surface antigens were detected.
Conclusion. The state of innate immunity in patients of the older age group with severe and moderate COVID-19 was characterized by a decrease in the activity of the interferon system. Decreased activity of cellular immunity to SARS CoV2 antigens was noted. Adaptive immunity was characterized by the development of an imbalance in the form of the appearance of autoantibodies to α-interferon and vascular endothelium.
About the Authors
O. N. ScheglovitovaRussian Federation
Moscow
Competing Interests:
None
L. V. Kolobukhina
Russian Federation
Moscow
Competing Interests:
None
A. A. Babayants
Russian Federation
Moscow
Competing Interests:
None
I. S. Frolova
Russian Federation
Moscow
Competing Interests:
None
E. I. Isaeva
Russian Federation
Moscow
Competing Interests:
None
I. S. Kruzhkova
Russian Federation
Moscow
Competing Interests:
None
A. A. Samkov
Russian Federation
Moscow
Competing Interests:
None
N. A. Antipyat
Russian Federation
Moscow
Competing Interests:
None
I. N. Tyurin
Russian Federation
Moscow
Competing Interests:
None
A. N. Narovliansky
Russian Federation
Moscow
Competing Interests:
None
F. I. Ershov
Russian Federation
Moscow
Competing Interests:
None
References
1. Masae Iwasaki, Junichi Saito, Hailin Zhao, Atsuhiro Sakamoto, Kazuyoshi Hirota, and Daqing Ma 1, “Inflammation Triggered by SARS-CoV-2 and ACE2 Augment Drives Multiple Organ Failure of Severe COVID-19: Molecular Mechanisms and Implications» Inflammation. 2020 DOI: 10.1007/s10753-020-01337-3.
2. Jose RJ, Manuel A. “COVID-19 cytokine storm: the interplay between inflammation and coagulation». Lancet, 2020. Respir Med 8:E46–E47
3. Narovlyanskij A.N., Ershov F.I., Sanin A.V., Pronin A.V. Sistema interferona pri COVID-19. Immunologiya. 2022; 43 (3): 245-254. DOI: https://doi.org/10.33029/0206-4952-2022-43-3-245-254
4. N. Yazdanpanah, N. Rezaei «Autoimmune complications of COVID 19», J Med Virol. 2022; 94:54–62
5. Maria K. Smatti, Farhan S. Cyprian, Gheyath K. Nasrallah, Asmaa A. Al Thani, Ruba O. Almishal and Hadi M. Yassine, «Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms”, Viruses 2019, 11, 762; doi:10.3390/v11080762 www.mdpi.com/journal/viruses
6. Eric Y Wang, Tianyang Mao, Jon Klein, Yile Dai, et al. «Diverse functional autoantibodies in patients with COVID-19» Nature. 2021 Jul; 595(7866):283-288. doi: 10.1038/s41586-021-03631-y.
7. Weilin Zhou, Wei Wang “Auto-antibodies against type I IFNs are associated with severe COVID-19 pneumonia” Signal Transduction and Targeted Therapy (2021) 6:96 ; https://doi.org/10.1038/s41392-021-00514-6
8. Celestino Sardu 1,2,y , Jessica Gambardella 3,4,y, Marco Bruno Morelli 4,5,y, Xujun Wang 4, Ra_aele Marfella 1 and Gaetano Santulli 3,4,5 «Hypertension, Thrombosis, Kidney Failure, and Diabetes: Is COVID-19 an Endothelial Disease? A Comprehensive Evaluation of Clinical and Basic Evidence» J. Clin. Med. 2020, 9, 1417-39;
9. Kade A.H. Zanin S.A. Gubareva E.A Turovaya A.YU Bogdanova YU.A Apsalyamova S.O Merzlyakova S.N «Fiziologicheskie funkcii sosudistogo endoteliya». Fundamental’nye issledovaniya. – 2011. – № 11 (chast’ 3) – S. 611-617
10. Hasan K. Siddiqi, Peter Libby, Paul M Ridker «COVID-19 – A vascular disease» Trends in Cardiovascular Medicine 31 (2021) 1–5
11. Susanna Varga, Andreas J Flammer, Peter Steiger, Martina Haberecker, et al. «Endothelial cell infection and endotheliitis in COVID-19». www.thelancet.com Vol 395 May 2, 2020. Published Online April 15, 2020 https://doi.org/10.1016/S0140-6736(20)30917-X
12. P. Wang, Ronghua Luo, Min Zhang, Yaqing Wang, et al «A cross-talk between epithelium and endothelium mediates human alveolar–capillary injury during SARS-CoV-2 infection» Cell Death and Disease (2020) 11:1042
13. John R. Teijaro,1,5 Kevin B. Walsh,1,5 Stuart Cahalan,2 Daniel M. Fremgen,1 Edward Roberts,3 Fiona Scott,4 Esther Martinborough,4 Robert Peach,4 Michael B.A. Oldstone,1, * and Hugh Rosen2, «Endothelial Cells Are Central Orchestrators of Cytokine Amplification during Influenza Virus Infection», Cell 2011, 146, 980–991
14. R. Escher, N. Breakey, B. Lammle, Severe COVID-19 infection associated with endothelial activation. Thromb. Res. 190, 62 (2020).
15. Cristina Belizna , Jan Willem Cohen Tervaert, «Specificity, pathogenecity, and clinical value of antiendothelialcell antibodies» Semin Arthritis Rheum. 1997 Oct;27(2):98-109. doi: 10.1016/s0049-0172(97)80010-8.
16. Yao-Hsu Yang, Yu-Hui Huang, Ya-Hui Chuang, Chung-Min Peng, Li-Chieh Wang, Yu-Tsan Lin, and Bor-Luen Chiang. «Autoantibodies Against Human Epithelial Cells and Endothelial Cells After Severe Acute Respiratory Syndrome (SARS)-Associated Coronavirus Infection» Journal of Medical Virology 77:1–7 (2005)
17. E.A. Jaffe, R.L. Nachman, C.G. Becker, C.R. Minick, Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria, J. Clin. Invest. 52 (1973) 2745–2756. http://dx.doi.org/10.1172/JCI10747023
18. Scheglovitova O.N. Skliankina NN, Boldyreva NV « Differences in functional activity of cultured human vascular endothelial cells derived from various donors» Cell and Tissue biology 2011, V5, N4, 353-357
19. Yan Dou,1 Soroosh Fatemi,1 Martin Darvas,2 Michael Gale, Jr.,3 and Warren Ladiges1 «A Geroscience Approach to Preventing Pathologic Consequences of COVID-19» J. of interf. And cytok. Res. Volume 40, Number 9, 2020 DOI: 10.1089/jir.2020.29018.dou
20. James M. Hill, Walter J. Lukiw. microRNA, the Innate-Immune System and SARS-CoV-2 Front. Cell. Infect. Microbiol., 2022, 12.https://doi.org/10.3389/fcimb.2022.887800
21. F.I. Ershov «Sistema interferona v norme i pri patologii», Medicina, 1996, 240 s.
22. Jintao Zhang, Chunyuan Zhao, Wei Zhao. «Virus Caused Imbalance of Type 1 IFN responce and inflamation in COVID-19». Front. Immunol., 2021, 12 https://doi.org/10.3389/fimmu.2021.633769.
23. Denis Y Logunov*, Inna V Dolzhikova*, Dmitry V Shcheblyakov, Amir I Tukhvatulin « Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia» www.thelancet.com Published online February 2, 2021 https://doi.org/10.1016/S0140-6736(21)00234-8
24. J. E. Walter et al., Broad-spectrum antibodies against self-antigens and cytokines in RAG deficiency. J. Clin. Invest. 125, 4135–4148 (2015). doi: 10.1172/JCI80477; pmid: 26457731
25. Q. Zhang et al., «Inborn errors of type I IFN immunity in patients with life-threatening COVID-19». Science 370, eabd4570 (2020). doi: 10.1126/science.abd4570
26. Matthias P. Nagele, Bernhard Haubner, Felix C. Tanner, Frank Ruschitzka, Andreas J. Flammer «Endothelial dysfunction in COVID-19: Current findings and therapeutic implications” Atherosclerosis,Volume 314, December 2020, Pages 58-62
27. Meng-Yuan Li, Lin Li, Yue Zhang, Xiao-Sheng Wang, «Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues» Infectious Diseases of Poverty (2020) 9:45 https://doi.org/10.1186/s40249-020-00662-x
28. Casciola-Rosen L. IgM autoantibodies recognizing ACE2 are associated with severe COVID-19 / L. Casciola-Rosen, D. R. Thiemann, F. Andrade, M. I. Trejo Zambrano, J. E. Hooper et al. Preprint. 2020 Oct 15. doi: 10.1101/2020.10.13.20211664.
29. Gulino D, Delachanal E, Concord E, et al. «Alteration of endothelial cell monolayer integrity triggers resynthesis of vascular endothelium cadherin.» J Biol Chem 1998; 273: 29,786–793.
30. Sophie Blaise, Helena Polena and Isabelle Vilgrain « Soluble vascular endothelial-cadherin and auto-antibodies to human vascular endothelial cadherin in human diseases: Two new biomarkers of endothelial dysfunction», Vascular Medicine · June 2015,1–9. DOI: 10.1177/1358863X15591201.
Review
For citations:
Scheglovitova O.N., Kolobukhina L.V., Babayants A.A., Frolova I.S., Isaeva E.I., Kruzhkova I.S., Samkov A.A., Antipyat N.A., Tyurin I.N., Narovliansky A.N., Ershov F.I. Features of the functioning of the innate and adaptive immunity system in patients with COVID-19 of the older age group. Journal Infectology. 2023;15(3):83-91. (In Russ.) https://doi.org/10.22625/2072-6732-2023-15-3-83-91