Predictors of length of hospital stay in patients with acute COVID-19
https://doi.org/10.22625/2072-6732-2023-15-1-86-92
Abstract
The aim of the study was to identify the predictors of length of hospital stay in patients with acute COVID-19, based on the pathophysiological particularities of SARS.
Materials and methods: The study was conducted from December 2020 to May 2021 on 103 randomized patients (59 men, mean age 62±13 years, body mass index 30.3±5.5 kg/m2 ) with moderate to severe acute COVID-19 infection who were hospitalized for emergency non-invasive oxygen therapy. Log-regression models were used to assess the suitability of some functional spirometric variables and/or SpO2/FiO2 surrogate oxygenation index to predict the duration of inpatient treatment from the day of the examination (≤ 7 vs. > 7 days).
Results: The analysis of the receiver operating characteristic curves showed that the relative indicator of the “ventilatory reserve” (the ratio of maximum voluntary ventilation to minute ventilation at rest, VR= MVV / MV) has sufficient sensitivity (82%), specificity (69%) and the area under the curve (AUC=0.7), although the SpO2/FiO2 ratio has a better predictive capacity (78%, 84% and 0.8 accordingly). The model combining these two integral indicators of gas exchange and the respiratory muscles reserve showed the best sensitivity (89%), specificity (84%) and area under the curve (0.9).
Conclusion: The proposed model for determining of the hypoxia vector by assessing the severity of ventilation-perfusion dissociation with indicators of oxygenation and ventilation showed that the MVV/MV ratio and SpO2/FiO2 ratio can be used alone and especially in combination, as effective outcome predictors of the acute phase of the infectious process caused by SARS-CoV-2.
About the Authors
E. S. Pan’koBelarus
Brest
S. V. Zhavoronok
Belarus
Minsk
A. M. Solovchuk
Belarus
Brest
S. S. Pan’ko
Belarus
Brest
S. V. Pan’ko
Belarus
Brest
References
1. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020 30;382(18):1708-1720. doi: 10.1056/NEJMoa2002032. Epub 2020 Feb 28.
2. Archer SL, Sharp WW, Weir EK. Differentiating COVID-19 Pneumonia From Acute Respiratory Distress Syndrome and High Altitude Pulmonary Edema: Therapeutic Implications.Circulation. 2020;142(2):101-104. doi:10.1161/CIRCULATIONAHA.120.047915/
3. Zinserling V.А., Vashukova М.А., Vasilyeva М.V., Isakov А.N., Lugovskaya N.А., Narkevich Т.А., Sukhanova Yu.V., Semenova N.Yu., Gusev D.А. Issues of pathology of a new coronavirus infection COVID-19. J Infectologii. 2020;12(2): 5-11. DOI: 10.22625/2072-6732-2020-12-2-5-11. (in Russian).
4. Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may be at least partially responsible for the respiratory failure of COVID-19 patients. J Med Virol 92: 552– 555, 2020. doi:10.1002/jmv.25728.
5. Alekseeva T.M., Isabekova P.Sh., Topuzova M.P., Skripchenko N.V. New onset of generalized myasthenia gravis developed after a new coronavirus infection (COVID-19). J Infectologii. 2021;13(4): 127-132. DOI: 10.22625/2072-6732-2021-13- 4-127-132 ( in Russian).
6. Rahman A, Tabassum T, Araf Y, Al Nahid A, Ullah MA, Hosen MJ. Silent hypoxia in COVID-19: pathomechanism and possible management strategy. Mol Biol Rep. 2021;48(4):3863- 3869. doi:10.1007/s11033-021-06358-1
7. Ferrandi PJ, Alway SE, Mohamed JS. The interaction between SARS-CoV-2 and ACE2 may have consequences for skeletal muscle viral susceptibility and myopathies. J Appl Physiol (1985). 2020;129(4):864-867.
8. Shi Z, de Vries HJ, Vlaar APJ, van der Hoeven J, Boon RA, Heunks LMA, et al. Diaphragm pathology in critically ill patients with COVID-19 and postmortem findings from 3 medical centers. JAMA Intern Med 2021;181:122–124.
9. Kelley RC, Ferreira LF. Diaphragm abnormalities in heart failure and aging: mechanisms and integration of cardiovascular and respiratory pathophysiology. Heart Fail Rev. 2017;22(2):191-207. doi:10.1007/s10741-016-9549-4.
10. Khalimov Yu.Sh., Agafonov P.V., Kireeva E.B. Obesity and COVID-19: insights from two pandemics. J Infectologii. 2022;14(2): 27-38. DOI: 10.22625/2072-6732-2022-14-2-5-13 (in Russian).
11. Byun MK, Cho EN, Chang J, Ahn CM, Kim HJ. Sarcopenia correlates with systemic inflammation in COPD. Int J Chron Obstruct Pulmon Dis. 2017;12:669-675https://doi.org/10.2147/ COPD.S130790.
12. Frat JP, Thille AW, Mercat A et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med 2015; 372:2185–2196. https ://doi.org/10.1056/ nejmo a1503 326
13. Lu X, Jiang L, Chen T, et al. Continuously available ratio of SpO2 /FiO2 serves as a noninvasive prognostic marker for intensive care patients with COVID-19.Respir Res. 2020;21(1):194. Published 2020 Jul 22. doi:10.1186/s12931-020-01455-4
14. Gibson P.G., Qin L., Puah S.H. COVID-19 acute respiratory distress syndrome (ARDS): Clinical features and differences from typical pre-COVID-19 ARDS. Med. J. Aust. 2020;213:54– 56.e1. doi: 10.5694/mja2.50674.
15. Gattinoni L., Chiumello D., Rossi S. COVID-19 pneumonia: ARDS or not? Crit. Care.2020;24:154. doi: 10.1186/s13054- 020-02880-z.
16. Huang Y, Tan C, Wu J, et al. Impact of coronavirus disease 2019 on pulmonary function in early convalescence phase. Respir Res. 2020;21(1):163. Published 2020 Jun 29. doi:10.1186/s12931-020-01429-6
17. Rahman A, Tabassum T, Araf Y, Al Nahid A, Ullah MA, Hosen MJ. Silent hypoxia in COVID-19: pathomechanism and possible management strategy. Mol Biol Rep. 2021;48(4):3863- 3869. doi:10.1007/s11033-021-06358-1
18. Catoire P, Tellier E, de la Rivi re C, et al. Assessment of the SpO2 /FiO2 ratio as a tool for hypoxemia screening in the emergency department. Am J Emerg Med. 2021;44:116-120. doi:10.1016/j.ajem.2021.01.092
19. Roozeman JP, Mazzinari G, Serpa Neto A, et al. Prognostication using SpO2 /FiO2 in invasively ventilated ICU patients with ARDS due to COVID-19 – Insights from the PRoVENTCOVID study. J Crit Care. 2022;68:31-37. doi:10.1016/j. jcrc.2021.11.009
20. Rice T.W., Wheeler A.P., Bernard G.R., et al. Comparison of the SpO2/FIO2 ratio and the PaO2/FIO2 ratio in patients with acute lung injury or ARDS. Chest. 2007;132(2):410–417. doi: 10.1378/chest.07-0617
21. Ren S, Zupetic JA, Tabary M, et al. Machine learning based algorithms to impute PaO2 from SpO2 values and development of an online calculator. Sci Rep. 2022;12(1):8235. Published 2022 May 17. doi:10.1038/s41598-022-12419-7
22. Seymour CW, Liu VX, Iwashyna TJ, et al. .Assessment of clinical criteria for sepsis: for the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):762-774. doi:10.1001/jama.2016.0288
23. Chen WL, Lin WT, Kung SC, Lai CC, Chao CM. The value of oxygenation saturation index in predicting the outcomes of patients with acute respiratory distress syndrome. J Clin Med. 2018;7(8):205. doi:10.3390/jcm7080205
24. Frat JP, Marie D, Thille AW. Acute respiratory failure: nonintubation assist methods for the acutely deteriorating patient.Curr Opin Crit Care. 2019;25(6):591-596. doi:10.1097/ MCC.0000000000000670
25. Catoire P, Tellier E, de la Rivière C, et al. Assessment of the SpO2 /FiO2 ratio as a tool for hypoxemia screening in the emergency department. Am J Emerg Med. 2021;44:116-120. doi:10.1016/j.ajem.2021.01.092
26. Torres-Castro R, Vasconcello-Castillo L, Alsina-Restoy X, et al. Respiratory function in patients post-infection by COVID-19: a systematic review and meta-analysis [published online ahead of print, 2020 Nov 25 Pulmonology. 2020;doi:10.1016/j. pulmoe.2020.10.013
27. Terzi N, Lofaso F, Masson R, et al. Physiological predictors of respiratory and cough assistance needs after extubation. Ann Intensive Care. 2018;8(1):18. Published 2018 Feb 5. doi:10.1186/s13613-018-0360-3.
28. Scarpino M, Bonizzoli M, Lazzeri C, et al. Electrodiagnostic findings in patients with non-COVID-19- and COVID19-related acute respiratory distress syndrome. Acta Neurol Scand. 2021;144(2):161-169. doi:10.1111/ane.13433.
Review
For citations:
Pan’ko E.S., Zhavoronok S.V., Solovchuk A.M., Pan’ko S.S., Pan’ko S.V. Predictors of length of hospital stay in patients with acute COVID-19. Journal Infectology. 2023;15(1):86-92. (In Russ.) https://doi.org/10.22625/2072-6732-2023-15-1-86-92