Предикторы длительности стационарного лечения острой фазы инфекционного процесса, вызванного COVID-19
https://doi.org/10.22625/2072-6732-2023-15-1-86-92
Аннотация
Цель: поиск предикторов длительности стационарного лечения острой фазы инфекционного процесса, вызванного SARS-CoV-2.
Материалы и методы: исследование выполнено с декабря 2020 г. по май 2021 г. на 103 (средний возраст 62±13 лет, индекс массы тела 30,3 ±5,5 кг/м2 , мужчин 59) рандомизированных пациентах со средней тяжести (n=68) и тяжелой (n=35) формой острого инфекционного процесса COVID-19, проходивших госпитальное лечение с применением поддерживающей неинвазивной кислородотерапии. Построение моделей лог-регрессии с биноминальным распределением использовалось для оценки пригодности отдельных функциональных спирометрических переменных и/или суррогатного индекса оксигенации прогнозировать длительность госпитализации пациентов после дня проведения обследования (≤ 7 против> 7 суток).
Результаты: проведенный анализ выявил, что относительный показатель «вентиляционного резерва» (отношение произвольной максимальной минутной вентиляции к минутной вентиляции в покое, VR= MVV/MV) обладает достаточной чувствительностью (Ч= 82%), специфичностью (С= 69%) и размером площади под кривой операционных характеристик (AUC= 0,7), уступая, однако, предикторным возможностям суррогатного индекса оксигенации SpO2 /FiO2 (Ч= 78%, С= 84% и AUC 0,8). Модель, комбинирующая эти относительные индикаторы газообмена и вентиляционного резерва, показала ещё большее увеличение чувствительности (89%), специфичности (84%) и площади под ROC-кривой (0,9).
Заключение: разработанная модель оценки вектора развития гипоксии по выраженности вентиляционно-перфузионной диссоциации продемонстрировала, что интегральные показатели оксигенации и вентиляционного резерва дыхательной мускулатуры могут быть использованы независимо и особенно в комбинации как эффективные предикторы исхода острой фазы инфекционного процесса, вызванного SARS-CoV-2.
Об авторах
Е. С. ПанькоБеларусь
Панько Екатерина Сергеевна – врач 1-го инфекционного отделения
тел.: +375(29)727-66-09
Брест
С. В. Жаворонок
Беларусь
Жаворонок Сергей Владимирович – профессор кафедры инфекционных болезней, д.м.н.
тел: +375(29)655-33-87
Минск
А. М. Соловчук
Беларусь
Соловчук Александр Михайлович – аспирант кафедры интеллектуальных информационных технологий
Брест
С. С. Панько
Беларусь
Панько Светлана Сергеевна – заведующая 1-м инфекционным отделением
тел.: +375(29)618-08-32
Брест
С. В. Панько
Беларусь
Панько Сергей Владимирович – хирург отделения торакальной хирургии Брестской областной клинической больницы; заведующий кафедрой анатомии, физиологии и безопасности человека Брестского государственного университета им. А.С. Пушкина, д.м.н., профессор
тел: +375(162)21-70-40
Брест
Список литературы
1. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020 30;382(18):1708-1720. doi: 10.1056/NEJMoa2002032. Epub 2020 Feb 28.
2. Archer SL, Sharp WW, Weir EK. Differentiating COVID-19 Pneumonia From Acute Respiratory Distress Syndrome and High Altitude Pulmonary Edema: Therapeutic Implications.Circulation. 2020;142(2):101-104. doi:10.1161/CIRCULATIONAHA.120.047915/
3. Цинзерлинг, В.А. Вопросы патоморфогенеза новой коронавирусной инфекции (COVID-19) / В.А. Цинзерлинг [и др.] // Журнал инфектологии. – 2020. – Т. 12, № 2. – С. 5–11. – DOI: 10.22625/2072-6732-2020-12-2-5-11.
4. Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may be at least partially responsible for the respiratory failure of COVID-19 patients. J Med Virol 92: 552– 555, 2020. doi:10.1002/jmv.25728.
5. Алексеева, Т.М. Дебют генерализованной миастении после перенесенной новой коронавирусной инфекции (COVID-19) / Т.М. Алексеева [и др.] // Журнал инфектологии. – 2021. – Т. 13, № 4. – С. 127-132. DOI: 10.22625/2072-6732- 2021-13-4-127-132
6. Rahman A, Tabassum T, Araf Y, Al Nahid A, Ullah MA, Hosen MJ. Silent hypoxia in COVID-19: pathomechanism and possible management strategy. Mol Biol Rep. 2021;48(4):3863- 3869. doi:10.1007/s11033-021-06358-1
7. Ferrandi PJ, Alway SE, Mohamed JS. The interaction between SARS-CoV-2 and ACE2 may have consequences for skeletal muscle viral susceptibility and myopathies. J Appl Physiol (1985). 2020;129(4):864-867.
8. Shi Z, de Vries HJ, Vlaar APJ, van der Hoeven J, Boon RA, Heunks LMA, et al. Diaphragm pathology in critically ill patients with COVID-19 and postmortem findings from 3 medical centers. JAMA Intern Med 2021;181:122–124.
9. Kelley RC, Ferreira LF. Diaphragm abnormalities in heart failure and aging: mechanisms and integration of cardiovascular and respiratory pathophysiology. Heart Fail Rev. 2017;22(2):191-207. doi:10.1007/s10741-016-9549-4.
10. Халимов, Ю.Ш. Ожирение и COVID-19: инсайты двух пандемий / Ю.Ш. Халимов, П.В. Агафонов, Е.Б. Киереева // Журнал инфектологии. – 2022. Т. 14, № 2. – С. 27–38. – DOI: 10.22625/2072-6732-2022-14-2-5-13.
11. Byun MK, Cho EN, Chang J, Ahn CM, Kim HJ. Sarcopenia correlates with systemic inflammation in COPD. Int J Chron Obstruct Pulmon Dis. 2017;12:669-675https://doi.org/10.2147/ COPD.S130790.
12. Frat JP, Thille AW, Mercat A et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med 2015; 372:2185–2196. https ://doi.org/10.1056/ nejmo a1503 326
13. Lu X, Jiang L, Chen T, et al. Continuously available ratio of SpO2 /FiO2 serves as a noninvasive prognostic marker for intensive care patients with COVID-19.Respir Res. 2020;21(1):194. Published 2020 Jul 22. doi:10.1186/s12931-020-01455-4
14. Gibson P.G., Qin L., Puah S.H. COVID-19 acute respiratory distress syndrome (ARDS): Clinical features and differences from typical pre-COVID-19 ARDS. Med. J. Aust. 2020;213:54– 56.e1. doi: 10.5694/mja2.50674.
15. Gattinoni L., Chiumello D., Rossi S. COVID-19 pneumonia: ARDS or not? Crit. Care.2020;24:154. doi: 10.1186/s13054- 020-02880-z.
16. Huang Y, Tan C, Wu J, et al. Impact of coronavirus disease 2019 on pulmonary function in early convalescence phase. Respir Res. 2020;21(1):163. Published 2020 Jun 29. doi:10.1186/s12931-020-01429-6
17. Rahman A, Tabassum T, Araf Y, Al Nahid A, Ullah MA, Hosen MJ. Silent hypoxia in COVID-19: pathomechanism and possible management strategy. Mol Biol Rep. 2021;48(4):3863- 3869. doi:10.1007/s11033-021-06358-1
18. Catoire P, Tellier E, de la Rivi re C, et al. Assessment of the SpO2 /FiO2 ratio as a tool for hypoxemia screening in the emergency department. Am J Emerg Med. 2021;44:116-120. doi:10.1016/j.ajem.2021.01.092
19. Roozeman JP, Mazzinari G, Serpa Neto A, et al. Prognostication using SpO2 /FiO2 in invasively ventilated ICU patients with ARDS due to COVID-19 – Insights from the PRoVENTCOVID study. J Crit Care. 2022;68:31-37. doi:10.1016/j. jcrc.2021.11.009
20. Rice T.W., Wheeler A.P., Bernard G.R., et al. Comparison of the SpO2/FIO2 ratio and the PaO2/FIO2 ratio in patients with acute lung injury or ARDS. Chest. 2007;132(2):410–417. doi: 10.1378/chest.07-0617
21. Ren S, Zupetic JA, Tabary M, et al. Machine learning based algorithms to impute PaO2 from SpO2 values and development of an online calculator. Sci Rep. 2022;12(1):8235. Published 2022 May 17. doi:10.1038/s41598-022-12419-7
22. Seymour CW, Liu VX, Iwashyna TJ, et al. .Assessment of clinical criteria for sepsis: for the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):762-774. doi:10.1001/jama.2016.0288
23. Chen WL, Lin WT, Kung SC, Lai CC, Chao CM. The value of oxygenation saturation index in predicting the outcomes of patients with acute respiratory distress syndrome. J Clin Med. 2018;7(8):205. doi:10.3390/jcm7080205
24. Frat JP, Marie D, Thille AW. Acute respiratory failure: nonintubation assist methods for the acutely deteriorating patient.Curr Opin Crit Care. 2019;25(6):591-596. doi:10.1097/ MCC.0000000000000670
25. Catoire P, Tellier E, de la Rivi re C, et al. Assessment of the SpO2 /FiO2 ratio as a tool for hypoxemia screening in the emergency department. Am J Emerg Med. 2021;44:116-120. doi:10.1016/j.ajem.2021.01.092
26. Torres-Castro R, Vasconcello-Castillo L, Alsina-Restoy X, et al. Respiratory function in patients post-infection by COVID-19: a systematic review and meta-analysis [published online ahead of print, 2020 Nov 25 Pulmonology. 2020;doi:10.1016/j. pulmoe.2020.10.013
27. Terzi N, Lofaso F, Masson R, et al. Physiological predictors of respiratory and cough assistance needs after extubation. Ann Intensive Care. 2018;8(1):18. Published 2018 Feb 5. doi:10.1186/s13613-018-0360-3.
28. Scarpino M, Bonizzoli M, Lazzeri C, et al. Electrodiagnostic findings in patients with non-COVID-19- and COVID-19-related acute respiratory distress syndrome. Acta Neurol Scand. 2021;144(2):161-169. doi:10.1111/ane.13433.
Рецензия
Для цитирования:
Панько Е.С., Жаворонок С.В., Соловчук А.М., Панько С.С., Панько С.В. Предикторы длительности стационарного лечения острой фазы инфекционного процесса, вызванного COVID-19. Журнал инфектологии. 2023;15(1):86-92. https://doi.org/10.22625/2072-6732-2023-15-1-86-92
For citation:
Pan’ko E.S., Zhavoronok S.V., Solovchuk A.M., Pan’ko S.S., Pan’ko S.V. Predictors of length of hospital stay in patients with acute COVID-19. Journal Infectology. 2023;15(1):86-92. (In Russ.) https://doi.org/10.22625/2072-6732-2023-15-1-86-92