Modern concepts on pathogenetic mechanisms of liver fibrosis
https://doi.org/10.22625/2072-6732-2023-15-1-16-24
Abstract
This review summarizes current data on the pathogenetic mechanisms of fibrosis in chronic liver diseases. Controlled inflammation and transdifferentiation of hepatic stellate cells into myofibroblasts is a key element of fibrogenesis, however, further study of the role of each of the macrophage populations is required. The initiation and progression of liver fibrosis is promoted by a complex interaction of different types of liver cells, mediated by cytokines, growth factors, miRNAs. Repeated cycles of apoptosis and regeneration of hepatocytes contribute to the pathogenesis of fibrosis. Modern experimental work has proven the role of mesenchymal stem cells in liver regeneration by inhibiting the expression of the proapoptotic BAX gene. The involution of liver fibrosis is associated with monocytes of the prorestorative phenotype LY6Clow. On in vivo models, regression of fibrosis and utilization of the extracellular matrix depot by inhibition of miRNA-221-3p of hepatocytes have been proven.
About the Authors
N. A. EfremovaRussian Federation
Saint-Petersburg
V. A. Greshnyakova
Russian Federation
Saint-Petersburg
L. G. Goryacheva
Russian Federation
Saint-Petersburg
References
1. Tacke F., Trautwein C. Mechanisms of liver fibrosis resolution. J. Hepatol. 2015;63 (4): 1038–1039. DOI:10.1016/j. jhep.2015.03.039
2. Roehlen N., Crouchet E., Baumert T.F. Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives. Cells 2020;9(4):875; doi:10.3390/cells9040875.
3. Asrani S.K., Devarbhavi H., Eaton J., Kamath P.S. Burden of liver diseases in the world. J. Hepatol.2019;70:151–171. DOI: 10.1016/j.jhep.2018.09.014
4. Campana L.; Iredale J.P. Regression of Liver Fibrosis. Semin. Liver Dis. 2017;37:1–10. DOI: 10.1055/s-0036-1597816
5. Zhou W.C., Zhang Q.B., Qiao L. Pathogenesis of liver cirrhosis. World J. Gastroenterol. 2014;20:7312–7324.doi: 10.3748/wjg.v20.i23.7312
6. Tacke F., Zimmermann H.W. Macrophage heterogeneity in liver injury and fibrosis. J. Hepatol. 2014; 60: 1090–1096. DOI: 10.1016/j.jhep.2013.12.025
7. Ying H.Z., Chen Q., Zhang W.Y. et.al. PDGF signaling pathway in hepatic fibrosis pathogenesis and therapeutics (Review). Mol. Med. Rep. 2017;16:7879–7889. DOI:10.3892/ mmr.2017.7641
8. Mihm S. Danger-Associated Molecular Patterns (DAMPs): Molecular Triggers for Sterile Inflammation in the Liver. Int. J. Mol. Sci. 2018, 19, 3104. doi:10.3390/ijms19103104
9. Tsung A., Sahai R., Tanaka H. et al. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemiareperfusion. J. Exp. Med. 2005, 201, 1135–1143. doi:10.1084/ jem.20042614
10. Li J., Wang F.-P., She W.-M. et.al. Enhanced high-mobility group box 1 (HMGB1) modulates regulatory T cells (Treg)/T helper 17 (Th17) balance via toll-like receptor (TLR)-4-interleukin (IL)-6 pathway in patients with chronic hepatitis B. J. Viral Hepat. 2014, 21, 129–140. DOI:10.1111/jvh.12152
11. Li J., Zeng C., Zheng B., Liu C. et al. HMGB1-induced autophagy facilitates hepatic stellate cells activation: A new pathway in liver fibrosis. Clin. Sci. 2018, 132, 1645–1667. DOI:10.1042/CS20180177
12. Huebener P., Pradere J.-P., Hernandez C. et al. The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis. J. Clin. Investig. 2015, 125, 539– 550.DOI:10.1172/JCI76887
13. Musso G., Cassader M., Paschetta E., Gambino R. Bioactive Lipid Species and Metabolic Pathways in Progression and Resolution of Nonalcoholic Steatohepatitis. Gastroenterology 2018, 155, 282–302 e288. DOI:10.1053/j.gastro.2018.06.031
14. Chiappini F., Coilly A., Kadar H. et al. Metabolism dysregulation induces a specific lipid signature of nonalcoholic steatohepatitis in patients. Sci. Rep. 2017, 7, 46658. DOI:10.1038/srep46658
15. Cazanave S.C., Wang X., Zhou H.et al. Degradation of Keap1 activates BH3-only proteins Bim and PUMA during hepatocyte lipoapoptosis. Cell Death Differ. 2014, 21, 1303–1312.
16. Shi H., Kokoeva M.V., Inouye K. et al.TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Investig. 2006, 116, 3015–3025. DOI: 10.1172/JCI28898
17. Ying H.Z., Chen Q., Zhang W.Y. et al. PDGF signaling pathway in hepatic fibrosis pathogenesis and therapeutics (Review). Mol. Med. Rep. 2017; 16(6):7879–7889. DOI:10.3892/ mmr.2017.7641
18. Ramachandran P., Pellicoro A., Vernon M.A. et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc. Natl. Acad. Sci. USA 2012, 109, 3186–3195. DOI:10.1073/pnas.1119964109
19. Mosser D.M., Edwards J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 2008, 8, 958– 969. DOI:10.1038/nri2448
20. Duffield J.S., Forbes S.J., Constandinou C.M. et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest. 2005, 115, 56–65. DOI:10.1172/JCI22675
21. Seki E., Minicis S.d., Inokuchi S. et al. CCR2 promotes hepatic fibrosis in mice. Hepatology 2009, 50, 185–197. DOI: 10.1002/hep.22952
22. Sahin H., Trautwein C., Wasmuth H.E. Functional role of chemokines in liver disease models. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 682–690. DOI: 10.1038/nrgastro.2010.168
23. Fisenko A.P. Molekulyarnaya diagnostika fibroza pri diffuzny`x boleznyax pe-cheni / A.P. Fisenko, I.E. Smirnov // Rossijskij pediatricheskij zhurnal. – 2019. – №22(2). – С. 106-115. (In Russ.).
24. Elpek GÖ. Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: An update. World J. Gastroenterol. 2014; 20(23):7260-7276. doi: 10.3748/wjg.v20.i23.7260.
25. Fabregat I., Moreno-Càceres J., Sánchez A. et al. TGF-β signalling and liver disease. FEBS J. 2016, 283, 2219–2232. DOI: 10.1111/febs.13665
26. Cyrkunov V.M. Klinicheskaya citologiya pecheni: zvezdchaty`e kletki Ito / V.M. Cyrkunov, V.P. Andreev, R.I. Kravchuk // Zhurnal Grodnenskogo gosudarstvenno-go medicinskogo universiteta. – 2016. – №4. – С. 90-99. (In Russ.).
27. Friedman S.L. Hepatic Stellate Cells: Protean, Multifunctional, and Enigmatic Cells of the Liver. Physiol. Rev. 2008, 88, 125–172. DOI: 10.1152/physrev.00013.2007
28. Nalobin D.S. Regenerativny`e sposobnosti pecheni mlekopitayushhix / D.S.Nalobin, S.I.Alipkina, M.S.Krasnov // Uspexi sovremennoj biologii. – 2016. – № 136(1). – С. 13-24. (In Russ.).
29. Kiseleva T. Molekulyarny`e i kletochny`e mexanizmy` fibroza pecheni i ego reg-ress / T.Kiseleva, D.Brener // Nat Rev Gastroenterol Hepatol. – 2021. – №18. – С. 151–166 .(In Russ.). doi.org/10.1038/s41575-020-00372-7
30. Kulebina E.A. Mexanizmy` formirovaniya fibroza pecheni: sovremenny`e pred-stavleniya / E.A.Kulebina, A.N.Surkov // Pediatriya. – 2019. – №98(6). – С. 166–170. (In Russ.).
31. Lebedeva E.I. Kletochno-molekulyarny`e mexanizmy` fibrogeneza pecheni / E.I.Lebedeva, O.D.Myadelecz // Gepatologiya i gastroe`nterologiya. – 2019. – №3(2). – С. 119-126. (In Russ.). doi: 10.25298/2616-5546-2019-3-2-119-12
32. Chu A.S., Diaz R., Hui, J.-J. et al. Lineage tracing demonstrates no evidence of cholangiocyte epithelial-to-mesenchymal transition in murine models of hepatic fibrosis. Hepatol. (Baltimore, Md.) 2011, 53, 1685–1695. DOI:10.1002/hep.24206
33. Higashi T., Friedman S.L., Hoshida Y. Hepatic stellate cells as key target in liver fibrosis . Adv.Drug Deliv. Rev., 2017;121:27-42. DOI: 10.1016/j.addr.2017.05.007
34. Poluxina A.V. Fibrogenez pecheni pri HCV-infekcii: sovremenny`j vzglyad na problemu / A.V.Poluxina, E.V.Vinniczkaya, Yu.G.Sandler // Vy`sokotexnologichnaya medicina. – 2018. – №4. – С. – 21-29. (In Russ.).
35. Novo E., Busletta C., Bonzo L.V. et al. Intracellular reactive oxygen species are required for directional migration of resident and bone marrowderived hepatic pro-fibrogenic cells. J. Hepatol. 2011; 54(5):964–974. DOI: 10.1016/j. jhep.2010.09.022
36. Lee S.M., Lee S.D., Wang S.Z. et al. Effect of mesenchymal stem cell in liver regeneration and clinical applications. Hepatoma Res 2021;7:53.doi.org/10.20517/2394-5079.2021.07
37. Eom Y.W., Shim K.Y., Baik S.K. Mesenchymal stem cell therapy for liver fibrosis. Korean J. Intern. Med. 2015;30(5):580– 589. DOI: 10.3904/kjim.2015.30.5.580
38. Wu H.H., Lee O.K. Exosomes from mesenchymal stem cells induce the conversion of hepatocytes into progenitor oval cells. Stem Cell Res. Ther. 2017;8(1):117.
39. Park M., Kim Y.H., Woo S.Y. et al. Tonsil-derived mesenchymal stem cells ameliorate CCl4-induced liver fibrosis in mice via autophagy activation. Sci. Rep. 2015;5:8616.
40. Sun X.E., Zhang X.Q., Liu M.M. Effect of bone marrow mesenchymal stem cells on the TGF-β1/Smad signaling pathway of hepatic stellate. Genet. Mol. Res. 2015;14(3):8744–8754. doi:10.12659/MSM.916428
41. Luo X.Y., Meng X.J., Cao D.C. et al. Transplantation of bone marrow mesenchymal stromal cells attenuates liver fibrosis in mice by regulating macrophage subtypes. Stem Cell Res. Ther. 2019;10(1):16.
42. Mardpour S., Hassani S.N., Mardpour S. et al. Extracellular vesicles derived from human embryonic stem cell-MSCs ameliorate cirrhosis in thioacetamide-induced chronic liver injury. J. Cell. Physiol. 2018;233(12):9330–9344. DOI: 10.1002/ jcp.26413
43. Payushina O.V. Regulyatornoe vliyanie mezenximal`ny`x stromal`ny`x kletok na razvitie fibroza pecheni: kletochnomolekulyarny`e mexanizmy` i perspektivy` klinicheskogo primeneniya / O.V.Payushina, D.A.Czomartova, E.V.Chereshneva // Zhurnal obshhej biologii. – 2020. – №81(2). – С. 83-95. (In Russ.). DOI: 10.31857/S0044459620020062
44. Xu X., Li D., Li X. et al. Mesenchymal stem cell conditioned medium alleviates oxidative stress injury induced by hydrogen peroxide via regulating miR143 and its target protein in hepatocytes. BMC Immunol. 2017;18(1): 51.
45. Hirata M., Ishigami M., Matsushita Y. et al. Multifaceted therapeutic benefits of factors derived from dental pulp stem cells for mouse liver fibrosis. Stem Cells Transl. Med. 2016;5(10):1416–1424.doi: 10.5966/sctm.2015-0353
46. Ly`zikov A. N. Mexanizmy` regeneracii pecheni v norme i pri patologii. / A.N.Ly`zikov // Problemy` zdorov`ya i e`kologii. – 2015. – № 1(43). – С. 4-9. (In Russ.).
47. Mao S.A., Glorioso J.M., Nyberg S.L. Liver regeneration. Transl Res. 2014 Apr; 163(4):352–362.https://doi. org/10.1016/j.trsl.2014.01.005.
48. Plexanov A.N. Regeneraciya pecheni: reshenny`e i problemny`e voprosy` (soobshhe-nie 1) / A.N.Plexanov, A.I.Tovarishhnov // Xirurgiya. Zhurnal im.N.I.Pirogova. – 2020. – №11. – С. – 101-106. (In Russ.).
49. Binatti E., Gerussi A., Barisani D., Invernizzi P. The Role of Macrophages in Liver Fibrosis: New Therapeutic Opportunities. Int. J. Mol. Sci. 2022,23, 6649. https://doi.org/10.3390/ ijms23126649.
50. Gluxov A.A. Vliyanie e`kspressii faktorov rosta na process regeneracii pecheni / A.A.Gluxov, A.Yu.Laptiyova, A.P.Ostroushko // Sibirskoe medicinskoe obozrenie. – 2022. – №1. – С. – 15-22. (In Russ.). DOI: 10.20333/25000136-2022- 1-15-22
51. Chen, F. et al. Broad distribution of hepatocyte proliferation in liver homeostasis and regeneration.Cell Stem Cell.26, 27–33 (2020). DOI: 10.1016/j.stem.2019.11.001
52. Campana L., Esser H., Huch M. Liver regeneration and inflammation: from fundamental science to clinical applications. Nat Rev Mol Cell Biol. 22, 608–624 (2021). https://doi. org/10.1038/s41580-021-00373.
53. Sun T. et al. AXIN2+ pericentral hepatocytes have limited contributions to liver homeostasis and regeneration. Cell Stem Cell.26, 97–107 (2020). https://doi.org/10.1016/j. stem.2019.10.011
54. Forbes S. J., Newsome P. N. Liver regeneration-mechanisms and models to clinical application.Nat. Rev. Gastroenterol.Hepatol.13,473–485(2016). DOI: 10.1038/nrgastro.2016.97
55. Tarlow B.D., Pelz C., Naugler W.E. et al. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell. 2014 Nov 6;15(5):605-18. doi: 10.1016/j.stem.2014.09.008.
56. Kiseleva Ya.V., Zharikov Yu.O., Maslennikov R.V., et al. Molecular factors associated with regression of liver fibrosis of alcoholic etiology. Terapevticheskii Arkhiv (Ter. Arkh.). 2021; 93 (2): 204–208. DOI: 10.26442/00403660.2021.02.2006 17.
57. Tsay HC, Yuan Q, Balakrishnan A. et al. Hepatocytespecific suppression of microRNA-221-3p mitigates liver fi brosis. J Hepatol. 2019 Apr;70(4):722-734. doi: 10.1016/j. jhep.2018.12.016.
58. Kantari-Mimoun C., Krzywinska E., Castells M. et al. Boosting the hypoxic response in myeloid cells accelerates resolution of fibrosis and regeneration of the liver in mice. Oncotarget. 2017 Feb 28;8(9):15085-15100. doi: 10.18632/oncotarget.14749.
Review
For citations:
Efremova N.A., Greshnyakova V.A., Goryacheva L.G. Modern concepts on pathogenetic mechanisms of liver fibrosis. Journal Infectology. 2023;15(1):16-24. (In Russ.) https://doi.org/10.22625/2072-6732-2023-15-1-16-24