Вакцинация как стратегия преодоления антимикробной резистентности: свежий взгляд на известную проблему
https://doi.org/10.22625/2072-6732-2023-15-1-5-15
Аннотация
Вопрос антимикробной резистентности продолжает оставаться на первой странице повестки мировых проблем. Система факторов, влияющих на рост резистентности бактерий к антибиотикам, формируется на основе нескольких направлений (медицина, ветеринария, сельское хозяйство и окружающая среда). Соответственно, и решение проблемы антимикробной резистентности требует понимания концепции единого здоровья (One Health approach). Вакцинация как важнейший инструмент борьбы с антимикробной резистентностью подробно рассмотрена в настоящем обзоре. Представлены вакцин-индуцированные прямые и косвенные механизмы преодоления антимикробной резистентности, а также обозначены современная доказательная база и перспективы расширения применения вакцин в контексте данной проблемы.
Более массовая вакцинация как против известных бактериальных патогенов (пневмококк, гемофильная инфекция типа b, брюшной тиф), так и против вирусных инфекций (грипп, ротавирусная инфекция) позволит снизить бремя резистентных к антибиотикам инфекций и таким образом сохранить эффективные опции для лечения и спасения человеческих жизней.
Об авторе
И. О. СтомаБеларусь
Стома Игорь Олегович – ректор, профессор кафедры инфекционных болезней, д.м.н., профессор
Гомель
Список литературы
1. Clatworthy A.E., Pierson E., Hung D.T. Targeting virulence: a new paradigm for antimicrobial therapy // Nat Chem Biol. 2007. Vol. 3, N9. P. 541–548.
2. Baker S.J., Payne D.J., Rappuoli R., et al. Technologies to address antimicrobial resistance // Proc Natl Acad Sci U S A. 2018. Vol. 115, N51. P. 12887–12995.
3. Lipsitch M., Siber G.R. How Can Vaccines Contribute to Solving the Antimicrobial Resistance Problem? // mBio. 2016. Vol. 7, N3. P. e00428-e00436.
4. Jansen K.U., Knirsch C., Anderson A.S. The role of vaccines in preventing bacterial antimicrobial resistance. // Nat Med. 2018. Vol. 24, N1. P.10–19.
5. Ten health issues WHO will tackle this year [Internet]. Доступно по: https://www.who.int/news-room/spotlight/ ten-threats-to-global-health-in-2019. Ссылка активна на 15 октября 2022.
6. The role of vaccination in reducing antimicrobial resistance (AMR) [Internet]. Доступно по: http://www.vaccineseurope.eu/wp-content/uploads/2016/11/VE-policy-paper-on-the-role-of-vaccines-in-reducing-AMR-2016-FIN.pdf. Ссылка активна на 29 октября 2022.
7. Стома, И.О. Общая вакцинология: учеб.- практическое пособие / И.О. Стома // Минск: Профессиональные издания. – 2022. – 235 с.
8. Kennedy D.A, Read A.F. Why the evolution of vaccine resistance is less of a concern than the evolution of drug resistance // Proc Natl Acad Sci. 2018. Vol. 115, N51. P. 12878–12886.
9. Mallory M.L., Lindesmith L.C., Baric R.S. Vaccinationinduced herd immunity: Successes and challenges // J Allergy Clin Immunol. 2018. Vol. 142, N1. P. 64–66.
10. Bloom D.E., Black S., Salisbury D., et al. Antimicrobial resistance and the role of vaccines // Proc Natl Acad Sci U S A. 2018. Vol. 115, N51. P. 12868–12871.
11. Стома, И.О. Микробиом в медицине : руководство для врачей / И.О. Стома. – М.: ГЭОТАР-Медиа, 2020.
12. Lange K., Buerger M., Stallmach A., Bruns T. Effects of Antibiotics on Gut Microbiota // Dig Dis Basel Switz. 2016. Vol. 34, N3. P. 260–268.
13. Langdon A., Crook N., Dantas G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation // Genome Med. 2016. Vol. 8. P. 39.
14. Francino M.P. Antibiotics and the Human Gut Microbiome: Dysbioses and Accumulation of Resistances // Front Microbiol. 2016. Vol. 6. P. 1543.
15. Стома, И.О. Микробиом человека: монография / И.О. Стома, И.А. Карпов. – Минск: Доктор Дизайн, 2018. – 122 с.
16. Kennedy D.A., Read A.F. Why does drug resistance readily evolve but vaccine resistance does not? // Proc R Soc B Biol Sci. 2017. Vol. 284, N1851: 20162562.
17. Cohen R., Biscardi S., Levy C. The multifaceted impact of pneumococcal conjugate vaccine implementation in children in France between 2001 to 2014 // Hum Vaccines Immunother. 2016. Vol. 12, N2. P. 277–284.
18. Kempf M., Varon E., Lepoutre A., et al. Decline in antibiotic resistance and changes in the serotype distribution of Streptococcus pneumoniae isolates from children with acute otitis media; a 2001-2011 survey by the French Pneumococcal Network // Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2015. Vol. 21, N1. P. 35–42.
19. Zhou F., Shefer A., Kong Y., Nuorti J.P. Trends in acute otitis media-related health care utilization by privately insured young children in the United States, 1997-2004 // Pediatrics. 2008. Vol. 121, N2. P. 253–260.
20. Fireman B., Black S.B., Shinefield H.R., et al. Impact of the pneumococcal conjugate vaccine on otitis media // Pediatr Infect Dis J. 2003. Vol. 22, N1. P. 10–16.
21. Ginsburg A.S., Klugman K.P. Vaccination to reduce antimicrobial resistance // Lancet Glob Health. 2017. Vol. 5, N12. P. e1176– e1177.
22. Wang L.M., Cravo Oliveira Hashiguchi T., Cecchini M. Impact of vaccination on carriage of and infection by antibiot ic-resistant bacteria: a systematic review and meta-analysis // Clin Exp Vaccine Res. 2021. Vol. 10, N2. P. 81–92.
23. Tomczyk S., Lynfield R., Schaffner W., et al. Prevention of Antibiotic-Nonsusceptible Invasive Pneumococcal Disease With the 13-Valent Pneumococcal Conjugate Vaccine // Clin Infect Dis Off Publ Infect Dis Soc Am. 2016. Vol. 62, N9. P. 1119–1125.
24. Hampton L.M, Farley M.M, Schaffner W., et al. Prevention of antibiotic-nonsusceptible Streptococcus pneumoniae with conjugate vaccines // J Infect Dis. 2012. Vol. 205, N3. P. 401–411.
25. Rappuoli R., Bloom D.E., Black S. Deploy vaccines to fight superbugs // Nature. 2017. Vol. 552, N7684. P.165–167.
26. Peltola H., Aavitsland P., Hansen K.G., et al. Perspective: A Five-Country Analysis of the Impact of Four Different Haemophilus influenzae Type b Conjugates and Vaccination Strategies in Scandinavia // J Infect Dis. 1999. Vol. 179, N1. P. 223–229.
27. Hoban D., Felmingham D. The PROTEKT surveillance study: antimicrobial susceptibility of Haemophilus influenzae and Moraxella catarrhalis from community-acquired respiratory tract infections // J Antimicrob Chemother. 2002. Vol. 50, Suppl S1. P. 49–59.
28. Jorgensen J.H, Doern G.V, Maher L.A, et al. Antimicrobial resistance among respiratory isolates of Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae in the United States. // Antimicrob Agents Chemother. ноябрь 1990. Vol. 34, N11. P. 2075–2080.
29. Buchy P., Ascioglu S., Buisson Y., et al. Impact of vaccines on antimicrobial resistance // Int J Infect Dis IJID Off Publ Int Soc Infect Dis. 2020. Vol. 90. P. 188–196.
30. Andrews J.R., Baker S., Marks F. Typhoid conjugate vaccines: a new tool in the fight against antimicrobial resistance // Lancet Infect Dis. 2019. Vol. 19, N1. P. e26–e30.
31. Kwong J.C., Maaten S., Upshur R.E.G., et al. The effect of universal influenza immunization on antibiotic prescriptions: an ecological study // Clin Infect Dis Off Publ Infect Dis Soc Am. 2009. Vol. 49, N5. P. 750–756.
32. Neuzil K.M., Mellen B.G., Wright P.F., et al. The effect of influenza on hospitalizations, outpatient visits, and courses of antibiotics in children // N Engl J Med. 2000. Vol. 342, N4. P. 225–231.
33. Buckley B.S, Henschke N., Bergman H., et al. Impact of vaccination on antibiotic usage: a systematic review and metaanalysis // Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2019. Vol. 25, N10. P. 1213–1225.
34. Johansson N., Kalin M., Tiveljung-Lindell A., et al. Etiology of community-acquired pneumonia: increased microbiological yield with new diagnostic methods // Clin Infect Dis Off Publ Infect Dis Soc Am. 2010. Vol. 50, N2. P. 202–209.
35. Kash J.C, Taubenberger J.K. The Role of Viral, Host, and Secondary Bacterial Factors in Influenza Pathogenesis // Am J Pathol. 2015. Vol. 185, N6. P. 1528–1536.
36. Klein E.Y., Monteforte B., Gupta A., et al. The frequency of influenza and bacterial coinfection: a systematic review and meta-analysis // Influenza Other Respir Viruses. 2016. Vol. 10, N5. P. 394–403.
37. Yang Y., Yao K., Ma X., et al. Variation in Bordetella pertussis Susceptibility to Erythromycin and Virulence-Related Genotype Changes in China (1970-2014). Hozbor DF, ed. // PLOS ONE. 2015. Vol. 10, N9. P. e0138941.
38. Liu X, Wang Z, Zhang J, Li F, Luan Y, Li H, et al. Pertussis Outbreak in a Primary School in China: Infection and Transmission of the Macrolide-resistant Bordetella pertussis // Pediatr Infect Dis J. 2018. Vol. 37, N6. P. e145– e148.
39. Fu P., Wang C., Tian H., et al. Bordetella pertussis Infection in Infants and Young Children in Shanghai, China 2016-2017: Clinical Features, Genotype Variations of Antigenic Genes and Macrolides Resistance // Pediatr Infect Dis J. 2019. Vol. 38, N4. P. 370–376.
40. Chen Z., He Q. Immune persistence after pertussis vaccination // Hum Vaccines Immunother. 2017. Vol. 13, N4. P. 744–756.
41. Van Effelterre T., Moore M.R., Fierens F, et al. A dynamic model of pneumococcal infection in the United States: implications for prevention through vaccination // Vaccine. 2010. Vol. 28, N21. P. 3650–3660.
42. Mitchell P.K., Lipsitch M., Hanage W.P. Carriage burden, multiple colonization and antibiotic pressure promote emergence of resistant vaccine escape pneumococci // Philos Trans R Soc B Biol Sci. 2015. Vol. 370, N1670: 20140342.
43. Temime L., Boëlle P.Y, Valleron A.J., et al. Penicillinresistant pneumococcal meningitis: high antibiotic exposure impedes new vaccine protection // Epidemiol Infect. 2005. Vol. 133, N3. P. 493–501.
44. Tekle Y.I., Nielsen K.M, Liu J, et al. Controlling antimicrobial resistance through targeted, vaccine-induced replacement of strains // PloS One. 2012. Vol. 7, N12. P. e50688.
45. Levy S.B., Marshall B. Antibacterial resistance worldwide: causes, challenges and responses // Nat Med. 2004. Vol. 10, 12 Suppl. P. S122-129.
46. Sherman R.E., Anderson S.A., Dal Pan G.J., et al. RealWorld Evidence – What Is It and What Can It Tell Us? // N Engl J Med. 2016. Vol. 375, N23. P. 2293–2297.
47. Feldman M.F, Mayer Bridwell A.E., Scott N.E., et al. A promising bioconjugate vaccine against hypervirulent Klebsiella pneumoniae // Proc Natl Acad Sci U S A. 2019. Vol. 116, N37. P.18655–18663.
48. Hegerle N., Choi M., Sinclair J., et al. Development of a broad spectrum glycoconjugate vaccine to prevent wound and disseminated infections with Klebsiella pneumoniae and Pseudomonas aeruginosa // PloS One. 2018. Vol. 13, N9. P. e0203143.
49. Bröker M., Berti F., Schneider J., et al. Polysaccharide conjugate vaccine protein carriers as a “neglected valency” – Potential and limitations // Vaccine. 2017. Vol. 35, N25. P. 3286–3294.
50. Ghasemi A, Mohammad N, Mautner J., et al. Immunization with a recombinant fusion protein protects mice against Helicobacter pylori infection // Vaccine. 2018. Vol. 36, N34. P. 5124–1532.
51. Zeng M, Mao XH, Li JX., et al. Efficacy, safety, and immunogenicity of an oral recombinant Helicobacter pylori vaccine in children in China: a randomised, double-blind, placebocontrolled, phase 3 trial. // Lancet Lond Engl. 2015. Vol. 386, N 10002. P. 1457–1464.
52. Riddle MS, Guerry P. Status of vaccine research and development for Campylobacter jejuni. // Vaccine. 2016. Vol. 34, N26. P. 2903–2906.
53. Naveed M, Jabeen K, Naz R., et al. Regulation of Host Immune Response against Enterobacter cloacae Proteins via Computational mRNA Vaccine Design through Transcriptional Modification. // Microorganisms. 2022. Vol. 10, N8. P.1621.
54. Lewnard J.A., Lo N.C., Arinaminpathy N., et al. Childhood vaccines and antibiotic use in low- and middle-income countries // Nature. 2020. Vol. 581, N7806. P. 94–99.
55. Birger R., Antillón M., Bilcke J., et al. Estimating the effect of vaccination on antimicrobial-resistant typhoid fever in 73 countries supported by Gavi: a mathematical modelling study // Lancet Infect Dis. 2022. Vol. 22, N5. P. 679–691.
56. Hamilton A., Haghpanah F., Hasso-Agopsowicz M., et al. Malaria Vaccine Impact on Drug-Susceptible and Resistant Cases and Deaths: A Modeling Study [Internet]. Roch ster, NY; 2022. Доступно по: https://papers.ssrn.com/abstract=4231231. Ссылка активна на 19 ноябрь 2022 г.
57. Kim C., Holm M., Frost I., et al. Global and Regional Burden of Attributable and Associated Bacterial Antimicrobial Resistance Avertable by Vaccination: Modelling Study [Internet]. Rochester, NY; 2022. Доступно по: https://papers.ssrn.com/ abstract=4105587. Ссылка активна на 19 ноябрь 2022 г.
Рецензия
Для цитирования:
Стома И.О. Вакцинация как стратегия преодоления антимикробной резистентности: свежий взгляд на известную проблему. Журнал инфектологии. 2023;15(1):5-15. https://doi.org/10.22625/2072-6732-2023-15-1-5-15
For citation:
Stoma I.O. Vaccination as a strategy to overcome antimicrobial resistance: a fresh look on a well-known problem. Journal Infectology. 2023;15(1):5-15. (In Russ.) https://doi.org/10.22625/2072-6732-2023-15-1-5-15