Immune system disturbances after a new coronavirus infection COVID-19
https://doi.org/10.22625/2072-6732-2022-14-4-26-37
Abstract
During the pandemic, a large number of works devoted to COVID infection have appeared, which have made it possible to understand the pathogenetic features of the disease and to accumulate significant clinical experience. However, the question remains about the degree of participation of humoral and cellular (primarily T-cell) immunity in the mechanisms of immune defense and resistance to COVID-19, the individual features of the immune response in different subjects. Post-COVID syndrome is currently a separate diagnosis included in the ICD-10 International Classification of Diseases, but the long-term effects of the SARS-CoV-2 on the immune system are not yet well established. At the same time, a long-term increased activity of the immune system can contribute to the development of autoimmune reactions. The review of the literature presents the results of studies, mainly devoted to immune system disorders after COVID infection. The changes in subpopulations of T-lymphocytes, B-lymphocytes, their functional properties, the complement system and other factors of humoral immunity, as well as the production of a number of cytokines are described. Data on immune disorders in post-COVID syndrome and during the convalescence period are presented in detail. Since COVID-19 is an infection that has a significant impact on the hematopoietic system and hemostasis, special attention is paid to the category of subjects with an increased risk of severe complications. Among the latter are elderly patients, persons suffering from diabetes mellitus, oncological and oncohematological patients, in particular, with hematopoietic and lymphoid tissue neoplasia, such as chronic lymphocytic leukemia, lymphoma, multiple myeloma. The review pays special attention to the peculiarities of the course of COVID-19 and the response of the immune system to vaccination in patients with oncohematological diseases. Deciphering the significance of individual links of cellular and humoral immunity in patients who have undergone COVID-19 is an important issue in creating effective vaccines and improving therapeutic methods.
About the Authors
T. V. GlazanovaRussian Federation
Saint-Petersburg
E. R. Shilova
Russian Federation
Saint-Petersburg
References
1. Bolevich C.B., Bolevich S.S. Kompleksnyj mekhanizm razvitiya СOVID-19. Sechenovskij vestnik.2020; 11(2): 50–61. doi: 10.47093/2218-7332.2020.11.2.50-61.
2. Sette A., Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell. 2021;184(4):861-880. doi: 10.1016/j.cell.2021.01.007
3. Mohn K.G., Br edholt G., Zhou F. et al. Durable T-cellular and humoral responses in SARS-CoV-2 hospitalized and community patients. PloS ONE, 2022;17(2):e0261979. doi: 10.1371/journal.pone.0261979
4. Malkova A.; Kudryavtsev I., Starshinova A. et al. Post COVID-19 Syndrome in Patients with Asymptomatic/Mild Form. Pathogens. 2021;10:1408. doi:10.3390/pathogens10111408
5. Wu J., Tang L., Ma Y. et al. Immunological Profiling of COVID-19 Patients with Pulmonary Sequelae. mBio. 2021;12(5):e0159921. doi:10.1128/mBio.01599-21
6. Nalbandian A., Sehgal K., Gupta A. et al. Post-acute COVID-19 syndrome. Nat. Med. 2021; 27: 601–615. doi: 10.1038/s41591-021-01283-z
7. Liu C., Martins A.J., Lau W.W.et al. Time-resolved systems immunology reveals a late juncture linked to fatal COVID-19. Cell Volume. 2021; 184(7):1836-1857.e22 doi:10.1016/j.cell.2021.02.018
8. Wong R.S., Wu A., To K.F. et al. Haematological manifestations in patients with severe acute respiratory syndrome: retrospective analysis. BMJ 2003;326(7403):1358–1362. doi: 10.1136/bmj.326.7403.1358
9. Li T., Qiu Z, Zhang L. et al. Significant changes of peripheral T lymphocyte subsets in patients with severe acute respiratory syndrome. J Infect Dis. 2004;189(4):648–51. doi:10.1086/381535
10. Zheng H.Y., Zhang M., Yang C.X,. et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020;17(5):541-543. doi:10.1038/s41423-020-0401-3
11. Diao B., Wang C., Tan Y. et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol 2020;11:827 doi:10.3389/fimmu.2020.00827
12. Chen J., Lau Y.F., Lamirande E.W. et al. Cellular immune responses to severe acute respiratory syndrome coronavirus (SARSCoV) infection in senescent BALB/c mice: CD4+T cells are important in control of SARS-CoV infection. J Virol. 2010;84(3):1289–1301. doi: 10.1128/JVI.01281-09.
13. Zheng M., Gao Y., Wang G. et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cellular & Molecular Immunology. 2020;17:533–535. doi:10.1038/s41423-020-0402-2
14. Braun J., Loyal L., Frentsch M. et al. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature. 2020;587(7833):270-274. doi:10.1038/s41586-020-2598-9
15. Rydyznski Moderbacher C., Ramirez S.I., Dan J.M., et al. Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity. Cell. 2020;183(4):996-1012.e19. doi:10.1016/j.cell.2020.09.038
16. Schulien I, Kemming J, Oberhardt V, et al. Characterization of pre-existing and induced SARS-CoV-2-specific CD8 + T cells. Nat Med. 2021;27(1):78-85. doi:10.1038/s41591-020-01143-2
17. Liu Y., Zhang C., Huang F. et al. Elevated plasma levels of selective cytokines in COVID-19 patients reflect viral load and lung injury. Sci. Rev. 2020;7:1003–1011. doi:10.1093/nsr/nwaa037
18. Shin H.-S., Kim Y., Kim G. et al. Immune responses to middle east respiratory syndrome coronavirus during the acute and convalescent phases of human infection. Clin Infect Dis. 2019; 68: 984–992. doi:10.1093/cid/ciy595
19. Bernardes J.P., Mishra N., Tran F. et al. Longitudinal Multiomics Analyses Identify Responses of Megakaryocytes, Erythroid Cells, and Plasmablasts as Hallmarks of Severe COVID-19. Immunity. 2020;53(6):1296-1314.e9. doi:10.1016/j.immuni.2020.11.017.
20. Mathew D., Giles J.R., Baxter A.E. et al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science. 2020;369(6508):eabc8511. doi: 10.1126/SCIENCE.ABC8511
21. Zhou F., Yu T., Du R. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. doi: 10.1016/S0140-6736(20)30566-3.
22. Vuitton D.A., Vuitton L., Seillès E., Galanaud P. A plea for the pathogenic role of immune complexes in severe Covid-19. Clin Immunol. 2020;217:108493. doi: 10.1016/j.clim.2020.108493.
23. Delanghe J.R., De Buyzere M.L, Speeckaert M.M. C3 and ACE1 polymorphisms are more important confounders in the spread and outcome of COVID-19 in comparison with ABO polymorphism. Eur J Prev Cardiol. 2020;27(12):1331–1332. doi: 10.1177/2047487320931305.
24. Fang S., Wang H., Lu L.et al. Decreased complement C3 levels are associated with poor prognosis in patients with COVID-19: a retrospective cohort study. Int Immunopharmacol 2020; 89(Pt A):107070. doi:10.1016/j.intimp.2020.107070
25. Rapkiewicz A.V., Mai X., Carsons S.E. et al. Megakaryocytes and plateletfibrin thrombi characterize multi-organ thrombosis at autopsy in COVID 19: a case series. E Clinical Medicine 2020;24:100434. doi: 10.1016/j.eclinm.2020.100434.
26. Battina H., Alentado V., Srour E. et al. Interaction of the inflammatory response and megakaryocytes in COVID-19 infection. Exp Hematol 2021; 104: .32-39. doi:10.1016/j.exphem.2021.09.005
27. Ragab D., Salah Eldin H., Taeimah M. et al. The COVID-19 cytokine storm: What we know so far. Front Immunol. 2020;11:1446. doi:10.3389/fimmu.2020.01446
28. Behrens K., Alexander W.S. Cytokine control of megakaryopoiesis. Growth Factors. 2018;36:89–103. doi:10.1080/08977194.2018.1498487
29. Baig A.M. Chronic COVID syndrome: need for an appropriate medical terminology for long-COVID and COVID long-haulers. J Med Virol. 2021;93(5):2555-2556. doi:10.1002/jmv.26624
30. Sudre C.H., Murray B., Varsavsky T. et al. Attributes and predictors of long COVID. Nature medicine. 2021; 27(4): 626–631. doi: 10.1038/s41591-021-01292-y
31. Chertow D., Stein S., Ramelli S. et al. SARS-CoV-2 infection and persistence throughout the human body and brain, 20 December 2021, PREPRINT (Version 1) available at Research Square https://doi.org/10.21203/rs.3.rs-1139035/v1
32. Su Y., Yuan D., Chen D.G. et al. Multiple Early Factors Anticipate Post-Acute COVID-19. Cell. 2022;185(5):881-895.e20. doi:10.1016/j.cell.2022.01.014
33. 33 Orologas-Stavrou N., Politou M., Rousakis P. et al. Peripheral blood immune profiling of convalescent plasma donors reveals alterations in specific immune subpopulations even at 2 months post sars-cov-2 infection. Viruses. 2021; 13: 26. doi.org/10.3390/v13010026
34. Knochelmann H.M., Dwyer C.J., Bailey, S.R. et al. When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cell. Mol. Immunol. 2018;15(5):458-469. doi:10.1038/s41423-018-0004-4
35. Gong F., Dai Y., Zheng T. et al. Peripheral CD4+ T cell subsets and antibody response in COVID-19 convalescent individuals. J. Clin. Investig. 2020; 130: 6588–6599. doi:10.1172/JCI141054
36. Kurata I., Matsumoto I., Sumida T. T follicular helper cell subsets: A potential key player in autoimmunity. Immunol. Med. 2021; 44: 1–9. doi:10.1080/25785826.2020.1776079
37. Shuwa H.A., Shaw T.N., Knight S.B. et al. Alterations in T and B cell function persist in convalescent COVID-19 patients. Med. 2021;2(6): 720–735.e4 doi.org/10.1016/j.medj.2021.03.013
38. Chen Q., Yu B,. Yang Y., et al. Immunological and inflammatory profiles during acute and convalescent phases of severe/critically ill COVID-19 patients. Int Immunopharmacol. 2021;97:107685.. doi:10.1016/j.intimp.2021.107685
39. Le Bert N., Clapham H., Tan A. et al. Highly functional virus-specific cellular immune response in asymptomatic SARS-CoV-2 infection. J. Exp. Med. 2021;218(5).e20202617 doi:10.1084/jem.20202617
40. Zhao B., Zhong M., Yang Q. et al. Alterations in Phenotypes and Responses of T Cells Within 6 Months of Recovery from COVID-19: A Cohort Study. Virol Sin. 2021;36(5):859-868. doi: 10.1007/s12250-021-00348-0
41. Sekine T., Perez-Potti A, Rivera-Ballesteros O. et al. Robust T Cell Immunity in Convalescent Individuals with Asymptomatic or Mild COVID-19 Cell. 2020;183(1):158-168.e14. doi: 10.1016/j.cell.2020.08.017
42. Rodríguez Y., Novelli L., Rojas M. et al. Autoinflammatory and autoimmune conditions at the crossroad of COVID-19. J Autoimmun. 2020;114:102506. doi:10.1016/j.jaut.2020.102506
43. Ehrenfeld M., Tincani A., Andreoli L., et al. Covid-19 and autoimmunity. Autoimmun Rev. 2020;19(8):102597. doi:10.1016/j.autrev.2020.102597
44. Druyan A., Lidar M., Brodavka M. et al. The risk for severe COVID 19 in patients with autoimmune and/or inflammatory diseases: first wave lessons. Dermatol Ther. 2021;34(1):e14627. doi:10.1111/dth.14627
45. Poddubnaya I.V., Tumyan G.S., Trofimova O.P. i dr. Osobennosti vedeniya onkogematologicheskih pacientov v usloviyah pandemii COVID-19. Sovremennaya Onkologiya. 2020; 22 (3): 45–58.The Lancet Oncology. COVID-19 and cancer: 1 year on. Lancet Oncol. 2021; 22(4):411. doi: 10.1016/S1470-2045(21)00148
46. The Lancet Oncology. COVID-19 and cancer: 1 year on. Lancet Oncol. 2021; 22(4):411. doi: 10.1016/S1470-2045(21)00148
47. Dulеry R., Lamure S., Delord M. et al. Prolonged in-hospital stay and higher mortality after Covid-19 among patients with nonHodgkin lymphoma treated with B-cell depleting immunotherapy. Am J Hematol. 2021;96:934–44. doi: 10.1002/ajh.26209
48. Goronzy J.J., Weyand C.M. Successful and maladaptive T cell aging. Immunity. 2017;46(3):364–78. doi:10.1016/j.immuni.2017.03.010
49. Scully E.P., Haverfield J., Ursin R.L. et al. Considering how biological sex impacts immune responses and COVID-19 outcomes. Nat Rev Immunol. 2020;20:442–447. doi:10.1038/s41577-020-0348-8
50. Peckham, H., de Gruijter N., Raine C. et al. Sex-bias in COVID-19: a meta-analysis and review of sex differences in disease and immunity, 20 April 2020, PREPRINT (Version 2) available at Research Square. doi:10.21203/rs.3.rs-23651/v2
51. Abdullah M., Chai P-S., Chong M-Y. et al. Gender effect on in vitro lymphocyte subset levels of healthy individuals. Cell Immunol. 2012;272(2):214–219. doi:10.1016/j.cellimm.2011.10.009
52. Grifoni A., Weiskopf D., Ramirez S.I. et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell. 2020;181(7):1489-1501. e15. doi:10.1016/j.cell.2020.05.015
53. Mato A., Roeker L., Lamanna N. et al. Outcomes of COVID-19 in patients with CLL: a multicenter international experience. Blood. 2020;136(10):1134–1143. doi:10.1182/blood.2020006965
54. Lee C., Shah M., Hoyos D. et al. Prolonged SARS-CoV-2 Infection in Patients with Lymphoid Malignancies. Cancer Discov. 2022;12(1):62–73. doi:10.1158/2159-8290.CD-21-1033
55. Tamariz-Amador L.E., Battaglia A., Maia C. et al. Immune biomarkers to predict SARS-CoV-2 vaccine effectiveness in patients with hematological malignancies. Blood Cancer J. 2021;11(12):202. doi: 10.1038/s41408-021-00594-1
56. Chung D., Shah G., Devlin S. et al. Disease- and TherapySpecific Impact on Humoral Immune Responses to COVID-19 Vaccination in Hematologic Malignancies. Blood Cancer Discov. 2021;2 (6): 568–576. doi: 10.1158/2643-3230.BCD-21-0139
57. Maneikis K., Šablauskas K., Ringelevičiūtė U., et al. Immunogenicity of the BNT162b2 COVID-19 mRNA vaccine and early clinical outcomes in patients with haematological malignancies in Lithuania: a national prospective cohort study. Lancet Haematol. 2021;8(8):e583-e592.
58. Addeo A., Shah P.K., Bordry N. et al. Immunogenicity of SARSCoV-2 messenger RNA vaccines in patients with cancer. Cancer Cell. 2021;39(8):1091–1098.e2. doi:10.1016/j.ccell.2021.06.009
59. Tvito A., Ronson A., Ghosheh R. et al. Anti-CD20 monoclonal antibodies inhibit seropositive response to Covid-19 vaccination in non-Hodgkin lymphoma patients within 6 months after treatment. Exp. Hematol. 2022;107:20-23. doi: 10.1016/j.exphem.2021.12.396.
60. Jotschke S., Schulze S., Jaekel N. et al. Longitudinal Humoral and Cellular Immune Responses Following SARS-CoV-2 Vaccination in Patients with Myeloid and Lymphoid Neoplasms Compared to a Reference Cohort: Results of a Prospective Trial of the East German Study Group for Hematology and Oncology (OSHO). Cancers (Basel). 2022;14(6):1544. doi:10.3390/cancers14061544
Review
For citations:
Glazanova T.V., Shilova E.R. Immune system disturbances after a new coronavirus infection COVID-19. Journal Infectology. 2022;14(4):26-37. (In Russ.) https://doi.org/10.22625/2072-6732-2022-14-4-26-37