Preview

Journal Infectology

Advanced search

Antimicrobial susceptibility of dominant Salmonella serovars, isolated in North-West federal district in 2004–2018 from different sourses

https://doi.org/10.22625/2072-6732-2022-14-1-131-139

Abstract

Objective: Comparative analysis of antimicrobial resistance of S. Enteritidis, S. Infantis, and S. Typhimurium isolated from humans, farm animals, and animal products.

Materials and methods. 898 Salmonella strains isolated from humans (673), farm animals (132), and animal products (93) were studied. Antimicrobial susceptibility was determined according to the EUCAST recommendations. The detection of beta-lactamase genes was performed by PCR. The mutations in the QRDR region of the gyrA gene were determined by amplification and direct sequencing of the internal fragment of the gene.

Results. Antimicrobial resistance in 69,9% of strains isolated from humans, 78,5% – from food, and 88,6% – from farm animals was detected. 68,7% of S. Enteritidis strains isolated from humans, 61,4% from food, and 21,1% isolated from animals were resistant to quinolones. The proportion of MDR S. Typhimurium strains ranged from 21,6% to 88,2%, depending on the source of isolation. From the S. Infantis strains 89,3% of strains isolated from humans, 94,5% – from animals and 97,8% – from food were resistant to antimicrobials, 67,9% of strains isolated from humans, 80,0% – from food and 89,0% ‒ from animals were MDR. The production of beta-lactamases TEM-1, CTX-M1, CTX-M2, and CMY-2 was detected. Resistance to quinolones was determined by a chromosomal mechanism: single-nucleotide substitutions in the gyrA gene were identified: Asp87Tyr, Ser83Phe, Asp87Asn, Ser83Tyr.

Conclusion. Antimicrobial susceptibility in Salmonella of dominant serovars had specific traits. Strains isolated from animals differed significantly from strains from humans and animal products. Resistance to quinolones and beta-lactams in Salmonella, regardless of the source of isolation and serovar, was due to molecular mechanisms universal for Enterobacteriacae.

About the Authors

A. V. Zabrovskaia
Saint-Petersburg State University of Veterinary Medicine
Russian Federation

Saint-Petersburg



S. A. Egorova
Saint-Petersburg Science Research Institute of Epidemiology and Microbiology named after Pasteur
Russian Federation

Saint-Petersburg



N. A. Antipova
Leningrad Interregional Veterinary Laboratory
Russian Federation

Saint-Petersburg



E. V. Smirnova
Center for Hygiene and Epidemiology in Saint-Petersburg, division № 3
Russian Federation

Saint-Petersburg



L. I. Semchenkova
Center for Hygiene and Epidemiology in Saint-Petersburg, division № 3
Russian Federation

Saint-Petersburg



T. E. Bystraya
Center for Hygiene and Epidemiology in Saint-Petersburg, division № 3
Russian Federation

Saint-Petersburg



S. Е. Sokolnik
Center for Hygiene and Epidemiology in Saint-Petersburg, division № 6
Russian Federation

Saint-Petersburg



N. P. Utkina
Center for Hygiene and Epidemiology in Saint-Petersburg, division № 6
Russian Federation

Saint-Petersburg



L. Y. Sikhando
Center for Hygiene and Epidemiology in Saint-Petersburg, division № 6
Russian Federation

Saint-Petersburg



N. V. Satosova
North-Western State Medical University named after I.I. Mechnikov
Russian Federation

Saint-Petersburg



References

1. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks 1n 2015/EFSA Journal. – 2016. – Vol.14(2). – P.4634 doi: 10.2903/j.efsa.2016.

2. EFSA (Euripean Food Safety Authority) and ECDC (European Centre of Disease Prevention and Control) The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2015//EFSA Journal. – 2017. – Vol.15. – №2. – P.4964 DOI: 10.2903/j.efsa.2017.4694.

3. O sostoyanii sanitarno-epidemiologicheskogo blagopoluchiya naseleniya v Rossijskoj Federacii v 2018 godu: Gosudarstvennyj doklad [Elektronnyj resurs]. – Moskva: Federal’naya sluzhba po nadzoru v sfere zashchity prav potrebitelej i blagopoluchiya cheloveka. – 2019. – 254s. – Rezhim dostupa: https://rospotrebnadzor.ru/ upload/iblock/798/gosudarstvennyy-doklad-o-sostoyanii-sanitarno_epidemiologicheskogo-blagopoluchiya-naseleniya-v-rossiyskoy-federatsii-v-2018-godu.pdf

4. Kuzemceva, S.V. Mikrobiologicheskij monitoring v sisteme epidemiologicheskogo nadzora za sal’monellezami / S.V. Kuzemcev, O.A. Mihajlova // Nacional’nye prioritety Rossii. – 2017.– Т. 26, № 4.– С. 92-96.

5. Rozhnova, S.SH. Perspektivy organizacii rasshirennoj sistemy nadzora za sal’monellezami v Rossii / S.SH. Rozhnova, N.K. Akulova, O.A. Hristyuhina // Epidemiologiya i vakcinoprofilaktika. – 2015. – Т. 85, № 6. – С. 28-34.

6. Bor’ba s ustojchivost’yu k antibiotikam s tochki zreniya bezopasnosti pishchevyh produktov v Evrope. Vsemirnaya organizaciya zdravoohraneniya. Evropejskoe regional’noe byuro. Rezhim dostupa: http://www.euro.who.int/ __data/assets/pdf_file/0011/144695/e94889R.pdf

7. FDA NARMS Retail Meat Interim Report for Salmonella. Режим доступа: www.fda.gov/downloads/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/UCM498134.pdf

8. Baker, S. Genomic insights into the emergence and spread of antimicrobial-resistant bacterial pathogens / S. Baker, N. Thomson, F-X. Weill, K.E. Holt // Science. – 2018. – Vol. 360 (6390). – Р.733-738.

9. Williams-Nguyen, J. Antibiotics and Antibiotic Resistancein Agroecosystems: State of the Science/J.Williams-Nguyen, J.B. Sallach, S.Bartelt-Hunt, A.B.Boxall, L.M.Durso, J.E. McLain, R.S.Singer, D.D.Snow, J.L.Zilles // J Environ Qual. – 2016. – Vol. 45(2). – P. 394-406.

10. CDC. National Salmonella Surveillance Annual Report, 2016 [Электронный ресурс] // Atlanta, Georgia: US Department of Health and Human Services. – CDC. – 2018. – Режим доступа: https://www.cdc.gov/nationalsurveillance/pdfs/2016-Salmonella-report-508.pdf

11. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017 // EFSA Journal. – 2018. – Vol. 16(12). – Article 5500.

12. Fonteneau, L. Multinational outbreak of travel-related Salmonella Chester infections in Europe, summers 2014 and 2015 / L. Fonteneau, Da Silva N. Jourdan, L. Fabre, P. Ashton, M. Torpdahl, L. M ller, B. Bouchrif, A. El Boulani, E. Valkanou, W. Mattheus, I. Friesema, S. Herrera Leon, C. Varela Mart nez, J. Mossong, E. Severi, K. Grant, F-X. Weill, C.M. Gossner, S. Bertrand, T. Dallman, S. Le Hello // Euro Surveill. – 2017. – Vol. 22(7). – Article 30463.

13. EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control), 2015. EU Summary Report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2013// EFSA Journal. – 2015. – Vol.3. – №2. – P.4036 doi:10.2903/j.efsa.2015.4036.

14. Antigenic formulae of the Salmonella serovars [Электронный ресурс]. – 9th edition. – 2007. – 167 p. – Режим доступа: https://www.pasteur.fr/sites/default /files/veng_0.pdf

15. Klinicheskie rekomendacii «Opredelenie chuvstvitel’nosti mikroorganizmov k antimikrobnym preparatam» (versii 2014, 2015, 2018 g.) [Elektronnyj resurs]. – Rezhim dostupa: http://www.antibiotic.ru/minzdrav/ files/docs/clrecdsma2018.pdf

16. European Committee on Antimicrobial Susceptibility Testing Breakpoint tables for interpretation of MICs and zone diameters [Электронный ресурс] // European Society of Clinical Microbiology and Infectious. – 2020. – Pежим доступа: http://www.eucast.org/clinical_breakpoints/Publications/antimicrobial-resistance-Salmonella-Campylobacter-harmonised-monitoring.pdf

17. Mudrak, D.E. Molekulyarno-geneticheskie osobennosti ustojchivosti k beta-laktamnym antibiotikam gramotricatel’nyh mikroorganizmov – vozbuditelej nozokomial’nyh infekcij: dis. kand. biol. nauk: 03.02.03/ Mudrak Dar’ya Evgen’evna. – М., 2010. – 140 с.

18. Dallenne, C. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae / C. Dallenne, A. Da Costa, D. Decré, C. Favier, G. Arlet // J Antimicrob Chemother. – 2010. – Vol. 65(3). – P. 490-495.

19. Wang, M. New plasmid-mediated quinolone resistance gene, qnrC, found in a clinical isolate of Proteus mirabilis / M. Wang, Q. Guo, X. Xu, X. Wang, X. Ye, S. Wu, D.C. Hooper, M. Wang // Antimicrob Agents Chemother. – 2009. – Vol. 53(5). – P. 1892–1897.

20. Nakaya, H. Life-threatening infantile diarrhea from fluoroquinolone-resistant Salmonella enterica Typhimurium with mutations in both gyrA and parC /H. Nakaya, A. Yasuhara, K. Yoshimura, Y. Oshihoi, H. Izumiya, H. Watanabe // Emerg Infect Dis. – 2003. – Vol. 9(2). – P.255-257


Review

For citations:


Zabrovskaia A.V., Egorova S.A., Antipova N.A., Smirnova E.V., Semchenkova L.I., Bystraya T.E., Sokolnik S.Е., Utkina N.P., Sikhando L.Y., Satosova N.V. Antimicrobial susceptibility of dominant Salmonella serovars, isolated in North-West federal district in 2004–2018 from different sourses. Journal Infectology. 2022;14(1):131-139. (In Russ.) https://doi.org/10.22625/2072-6732-2022-14-1-131-139

Views: 482


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-6732 (Print)