Preview

Journal Infectology

Advanced search

Assessment of specific T-cell immunity in patients who have been ill and vaccinated against COVID-19

https://doi.org/10.22625/2072-6732-2022-14-1-96-104

Abstract

Introduction. In the context of a pandemic of a new coronavirus infection (COVID-19), research on the peculiarities of the formation of an immune response to SARS-CoV-2 in patients who have been ill and vaccinated is of particular relevance. However, most studies are currently devoted to evaluating only the humoral link of immunity, and its cellular component remains insufficiently studied.

The aim of the study was to evaluate the features of the formation and changes of the T-cell link of immunity in patients with a new coronavirus infection and vaccinated against this disease.

Materials and methods. The study was performed on the basis of the clinical and diagnostic laboratory of the European Medical Center “UMMC-Health “LLC. Specific T-cell immunity was evaluated using ELISPOT technology. In the course of the study, 72 blood samples of employees of medical organizations were analyzed, including 26 from those who had a new coronavirus infection, 23 from persons who were intact according to COVID-19 before vaccination and 23 from the same employees after vaccination («Gam-CovidVac»).

In addition, each of the study participants was examined to determine specific class G antibodies (IgG) by solid-phase enzyme immunoassay using SARS-CoV-2-IgG-ELISA-BEST test systems (manufactured by VECTOR-BEST JSC).

Results and discussion. In the group of patients (26 people), T-lymphocytes capable of specifically reacting to SARSCoV-2 antigens were detected in 100% of cases, even in individuals with IgG elimination. It should be noted that the response was more pronounced when meeting with M-and N-pepdids, compared with S-protein.

22 out of 23 COVID-19 intact individuals had no T-cell immunity to coronavirus infection before vaccination, but one employee had a response to 3 proteins-M, N, S, which indicates that he had previously encountered the SARS-CoV-2 virus. After vaccination with the drug “Gam-Covid-Vac”, 22 (95.6%) employees revealed a T-cell response, while 21-only to S-protein, and an employee with a previously detected immune response-after vaccination, the response to M -, Nproteins remained almost at the same level, and the cellular response to S-peptide doubled.

Conclusion. Thus, based on the results of the study, important materials were obtained on the peculiarities of the formation of a specific T-cell immune response to a new coronavirus infection. The obtained data provide a broader understanding of the immune response in new coronavirus infection in patients who have been ill and vaccinated and can be used in the future when planning preventive and antiepidemic measures.

About the Authors

T. A. Platonova
European Medical Center «UMMC-Health»
Russian Federation

Yekaterinburg


Competing Interests:

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.



M. S. Sklyar
European Medical Center «UMMC-Health»
Russian Federation

Yekaterinburg


Competing Interests:

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.



A. A. Golubkova
Central Research Institute of Epidemiology; Russian Medical Academy of Continuing Professional Education
Russian Federation

Moscow


Competing Interests:

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.



T. A. Semenenko
National Research Centre of Epidemiology and Microbiology named after N.F. Gamaleya; First Moscow State Medical University named after I.M. Sechenov
Russian Federation

Moscow


Competing Interests:

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.



E. A. Karbovnichaya
European Medical Center «UMMC-Health»
Russian Federation

Yekaterinburg


Competing Interests:

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.



M. A. Chernyshev
European Medical Center «UMMC-Health»
Russian Federation

Yekaterinburg


Competing Interests:

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.



A. V. Vorobyov
European Medical Center «UMMC-Health»
Russian Federation

Yekaterinburg


Competing Interests:

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.



S. S. Smirnova
Yekaterinburg Research Institute of Virus Infections of State Scientific Center of Virology and Biotechnology «Vector»; Ural State Medical University
Russian Federation

Yekaterinburg


Competing Interests:

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.



References

1. Pshenichnaya N.Yu. COVID-19 – Novaya globalnaya ugroza chelovechestvu / N.Yu. Pshenichnaya, E.I. Veselova, D.A. Semenova [et al] // Epidemiology and infectious diseases. Topical issue – 2020. – №1. – Р. 6–13

2. Shchelkanov M.Yu. History of investigation and current classification of coronaviruses (nidovirales: coronaviridae) / M.Yu. Shchelkanov, A.Yu. Popova, V.G. Dedkov [et al.] // Russian Journal of Infection and Immunity. – 2020. – Vol. 10. – № 2. – P. 221–246.

3. Kryukov E.V. Electron microscopic changes in the nasal membrane of patients with COVID-19 depending on the clinical form and the period of the disease. / E.V. Kryukov, K.V. Zhdanov, K.V. Kozlov [et al.] // Journal Infectology. – 2021. – Vol. 13. -№2. –Р.5-13. https://doi.org/10.22625/2072-6732-2021-13-2-5-13

4. Salukhov V.V. Topical issues of diagnostics, examination and treatment of patients with COVID-19-associated pneumonia in different countries and continents / V.V. Salukhov, M.A. Kharitonov, E.V. Kryukov [et al.] // Meditsinskiy sovet – 2020. – № 21. – P. 96–102

5. Trishkin D.V. Standart diagnostiki i lecheniya novoy koronavirusnoy infektsii (COVID-19) u voennosluzhashchikh Vooruzhennykh Sil Rossiyskoy Federatsii / D.V. Trishkin, A.A. Sergoventsev, E.V. Kryukov [et al.] // Moscow: GVMU, 2020. – 54 p.

6. Ceylan Z. Estimation of COVID-19 prevalence in Italy, Spain, and France. / Z. Ceylan // Sci Total Environ. – 2020. – Vol. 729. – Р. 138817. doi:10.1016/j.scitotenv.2020.138817

7. She J. COVID-19 epidemic: Disease characteristics in children. / J. She, L. Liu, W. Liu [et al.] // J Med. Virol. – 2020. – Vol. 92. – №7. Р. 747-754 DOI 10.1002/jmv.25807

8. Ni L. Detection of SARS-CoV-2-Specific Humoral and Cellular Immunity in COVID-19 Convalescent Individuals / L. Ni, F. Ye, M.L Cheng [et al.] // Immunity. 2020. – Vol. 52. – №6. – P. 971-977.

9. Paces J. COVID-19 and the immune system / J. Paces, Z. Strizova, D. Smrz [et al.] // Physiol Res. – 2020. – Vol. 69. – №3. – P. 379-388.

10. Altmann D.M. What policy makers need to know about COVID-19 protective immunity / D.M. Altmann, D.C. Douek, R.J. Boyton // Lancet. 2020. – Vol. 395. – №10236. – P. 1527-1529.

11. Chowdhury M.A. Immune response in COVID-19: A review. / M.A. Chowdhury N. Hossain, M.A. Kashem [et al.] // J Infect Public Health. – 2020. – Vol. 13. – N11. – P. 1619-1629.

12. Ma H. Serum IgA, IgM, and IgG responses in COVID-19 / H. Ma, W. Zeng, H. He [et al.] // Cell Mol Immunol. – 2020. – Vol. 17. – №7. – P. 773-775.

13. Yang L. COVID-19: immunopathogenesis and Immunotherapeutics / L. Yang, S. Liu, J. Liu [et al.] // Signal Transduct Target Ther. – 2020. – Vol. 5. – №1. – Р.128. doi: 10.1038/s41392-020-00243-2.

14. Leslie M. T cells found in coronavirus patients ‘bode well’ for long-term immunity / M. Leslie // Science. – 2020. – Vol. 6493. – №368. Р. 809-810. doi: 10.1126/science.368.6493.809.

15. DiPiazza A.T. T cell immunity to SARS-CoV-2 following natural infection and vaccination / A.T. DiPiazza, B.S. Graham, T.J. Ruckwardt // Biochem Biophys Res Commun. -2021. – №538. – Р. 211-217. doi: 10.1016/j.bbrc.2020.10.060

16. Jarjour N.N. T Cell Memory: Understanding COVID-19 / N.N. Jarjour, D. Masopust, S.C. Jameson // Immunity. – 2021. – Vol. 54. – №1. – Р. 14-18. doi: 10.1016/j.immuni.2020.12.009.

17. De Candia P. T Cells: Warriors of SARS-CoV-2 Infection. / P. De Candia, F. Prattichizzo, S. Garavelli [et al.] // Trends Immunol. – 2021. – Vol. 42. – №1. Р.18-30. doi: 10.1016/j.it.2020.11.002.

18. Sette A. Pre-existing immunity to SARS-CoV-2: the knowns and unknowns / A. Sette, S. Crotty / Nat Rev Immunol. – 2020. – Vol. 20. – №8. – Р.457-458. doi: 10.1038/s41577-020-0389-z.

19. Le Bert N. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls / N. Le Bert, A.T. Tan, K, Kunasegaran [et al.] // Nature. – 2020. – Vol. 7821. – №.584. – Р. 457-462. doi: 10.1038/s41586-020-2550-z.

20. Shomuradova A.S. SARS-CoV-2 Epitopes Are Recognized by a Public and Diverse Repertoire of Human T Cell Receptors / A.S. Shomuradova, M.S. Vagida, S.A. Sheetikov [et al.] // Immunity. 2020. – Vol.53. – №6. – Р. 1245-1257.e5. doi: 10.1016/j.immuni.2020.11.004.

21. Peng Y. Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19 / Y. Peng, A.J. Mentzer, G, Liu [et al.] // Nat Immunol. – 2020. – Vol. 21. – №11. – Р. 1336-1345. doi: 10.1038/s41590-020-0782-6.

22. Cassaniti I. SARS-CoV-2 specific T-cell immunity in COVID-19 convalescent patients and unexposed controls measured by ex vivo ELISpot assay / I. Cassaniti, E. Percivalle, F. Bergami [et al.] // Clin Microbiol Infect. – 2021. – Vol. 27. – №7. Р.1029-1034. doi: 10.1016/j.cmi.2021.03.010.

23. Zhang J. One-year sustained cellular and humoral immunities of COVID-19 convalescents / J. Zhang, H. Lin, B. Ye [et al.] // Clin Infect Dis. – 2021. -ciab884. doi: 10.1093/cid/ciab884.

24. Chen G. L. Safety and immunogenicity of the SARSCoV-2 ARCoV mRNA vaccine in Chinese adults: a randomised, double-blind, placebo-controlled, phase 1 trial / G.L. Chen, X.F. Li, X.H. Dai [et al.] // Lancet Microbe. – 2022. Online. doi: 10.1016/S2666-5247(21)00280-9.

25. Folegatti P.M. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial / P.M. Folegatti, K.J. Ewer, P.K. Aley [et al.] // Lancet. – 2020. – Vol. 10249. – №396. – Р.467-478. doi: 10.1016/S0140-6736(20)31604-4.

26. Logunov D.Y. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia / D.Y. Logunov, I.V. Dolzhikova, D.V. Shcheblyakov [et al.] // Lancet. 2021. – Vol. 10275. – №397. Р. 671-681. doi: 10.1016/S0140-6736(21)00234-8.

27. Angyal A. T-cell and antibody responses to first BNT162b2 vaccine dose in previously infected and SARS-CoV2-naive UK health-care workers: a multicentre prospective cohort study / A. Angyal, S. Longet, S.C. Moore [et al.] // Lancet Microbe. – 2022. – Vol. 3. – №1. – Р.e21-e31. doi: 10.1016/S2666-5247(21)00275-5.

28. Vályi-Nagy I. Comparison of antibody and T cell responses elicited by BBIBP-CorV (Sinopharm) and BNT162b2 (Pfizer-BioNTech) vaccines against SARS-CoV-2 in healthy adult humans / I. Vályi-Nagy, Z. Matula, M. Gönczi [et al.] // Geroscience. – 2021. – Vol. 43. – №5. – Р. 2321-2331. doi: 10.1007/s11357-021-00471-6.

29. Dennehy K.M. Comparison of the Development of SARS-Coronavirus-2-Specific Cellular Immunity, and Central Memory CD4+ T-Cell Responses Following Infection versus Vaccination / K.M. Dennehy, E. Löll, C. Dhillon [et al.] // Vaccines (Basel). – 2021. – Vol. 9. – №12. – Р. 1439. doi: 10.3390/vaccines9121439.


Review

For citations:


Platonova T.A., Sklyar M.S., Golubkova A.A., Semenenko T.A., Karbovnichaya E.A., Chernyshev M.A., Vorobyov A.V., Smirnova S.S. Assessment of specific T-cell immunity in patients who have been ill and vaccinated against COVID-19. Journal Infectology. 2022;14(1):96-104. (In Russ.) https://doi.org/10.22625/2072-6732-2022-14-1-96-104

Views: 587


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-6732 (Print)