Preview

Journal Infectology

Advanced search

Antibodies to the receptor-binding domain of the SARS-Cov-2 spike protein: association with age, pneumonia, duration of the period after COVID-19

https://doi.org/10.22625/2072-6732-2022-14-1-69-77

Abstract

Despite the rapid accumulation of facts about the humoral immune response in COVID-19, there are still no evidencebased answers to questions about the factors influencing the level and duration of the detection period of antibodies to SARS-CoV-2 in the blood.

Objective: To assess the prevalence, clinical and demographic associations of IgG antibodies to RBD of the SARSCoV-2 spike protein at different times after COVID-19.

Materials and methods. Residents of the Altai region of Russia, Caucasians aged 20-93 years, who had COVID-19 from May 2020 to February 2021 (n = 314), took part in a onetime observational study. The level of antibodies in the blood was measured by enzyme-linked immunosorbent assay 1-14 months after the onset of the clinical manifestation of COVID-19.

Results. Anti-RBD IgG antibodies of the SARS-CoV-2 spike protein were detected in 86.9% of the study participants. The dependence of the antibody titer on the duration of the period after COVID-19 was not revealed. The antibody titer was positively correlated with the complication of COVID-19 pneumonia and the volume of lung tissue lesions. The presence of pneumonia COVID-19 and the volume of lung tissue lesions are positively associated with age. Age positively correlated with antibody titer regardless of the pneumonia COVID-19 in the anamnesis.

Conclusion. IgG antibodies to RBD of the SARS-CoV-2 spike protein are present in most of the COVID-19 patients. The titer of these antibodies in adults depends on age, complications of pneumonia COVID-19, and probably persists up to 14 months after the first symptoms of infection appear.

About the Authors

E. A. Kolosova
The State Scientific Center of Virology and Biotechnology «Vector»; Altai State University
Russian Federation

Koltsovo;
Barnaul


Competing Interests:

Авторы заявляют об отсутствии конфликта интересов.



O. N. Shaprova
The State Scientific Center of Virology and Biotechnology «Vector»
Russian Federation

Koltsovo


Competing Interests:

Авторы заявляют об отсутствии конфликта интересов.



Yu. A. Nikulina
Altai State Medical University
Russian Federation

Barnaul


Competing Interests:

Авторы заявляют об отсутствии конфликта интересов.



D. V. Shanshin
The State Scientific Center of Virology and Biotechnology «Vector»; Altai State University
Russian Federation

Koltsovo;
Barnaul


Competing Interests:

Авторы заявляют об отсутствии конфликта интересов.



V. S. Nesmeyanova
The State Scientific Center of Virology and Biotechnology «Vector»
Russian Federation

Koltsovo


Competing Interests:

Авторы заявляют об отсутствии конфликта интересов.



Yu. A. Merkuleva
The State Scientific Center of Virology and Biotechnology «Vector»
Russian Federation

Koltsovo


Competing Interests:

Авторы заявляют об отсутствии конфликта интересов.



S. V. Belenkaya
The State Scientific Center of Virology and Biotechnology «Vector»
Russian Federation

Koltsovo


Competing Interests:

Авторы заявляют об отсутствии конфликта интересов.



A. A. Isaeva
The State Scientific Center of Virology and Biotechnology «Vector»
Russian Federation

Koltsovo


Competing Interests:

Авторы заявляют об отсутствии конфликта интересов.



D. N. Shcherbakov
The State Scientific Center of Virology and Biotechnology «Vector»; Altai State University
Russian Federation

Koltsovo;
Barnaul


Competing Interests:

Авторы заявляют об отсутствии конфликта интересов.



S. A. Elchaninova
Altai State Medical University
Russian Federation

Barnaul


Competing Interests:

Авторы заявляют об отсутствии конфликта интересов.



M. A. Nikonorova
Altai State Medical University
Russian Federation

Barnaul


Competing Interests:

Авторы заявляют об отсутствии конфликта интересов.



References

1. Lotfi R, Kalmarzi RN, Roghani S.A. A review on the immune responses against novel emerging coronavirus (SARS-CoV-2). Immunol Res. 2021;69:213–224. https://doi.org/10.1007/s12026-021-09198-0

2. Byrnes JR, Zhou XX, Lui I, et al. Competitive SARS-CoV-2 serology reveals most antibodies targeting the spike receptorbinding domain compete for ACE2 binding. mSphere. 2020 Sep 16;5(5):e00802-20. https://doi.org/10.1128/mSphere.00802-20

3. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem.1951;193:265–275.

4. Ilyicheva T, Durymanov A, Susloparov I, et al. Fatal Cases of Seasonal Influenza in Russia in 2015-2016. PLoS One. 2016 Oct 24;11(10):e0165332. https://dx.doi.org/10.1371%2Fjournal.pone.0165332

5. Schoof M, Faust B, Saunders RA, Sangwan S, et al. An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike. Science. 2020;370(6523):1473–1479. http://dx.doi.org/10.1126/science.abe3255

6. Kazachinskaia E, Chepurnov A, Shcherbakov D, et al. IgG Study of Blood Sera of Patients with COVID-19. Pathogens. 2021; 10(11):1421. https://doi.org/10.3390/pathogens10111421

7. Post N, Eddy D, Huntley C, et al. Antibody response to SARS-CoV-2 infection in humans: A systematic review. PLoS One. 2020 Dec 31;15(12):e0244126. https://doi.org/10.1371/journal.pone.0244126

8. Wilk AJ, Rustagi A, Zhao NQ, et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat Med. 2020;26:1070–6. https://doi.org/10.1038/s41591-020-0944-y

9. Gallais F, Gantner P, Bruel T, et al. Anti-SARS-CoV-2 Antibodies persist for up to 13 months and reduce risk of reinfection. medRxiv. 2021 05.07.21256823. https://doi.org/10.1101/2021.05.07.21256823

10. Yoo JH. What we do know and do not yet know about COVID-19 vaccines as of the beginning of the year 2021. J Korean Med Sci;2021:36:e54. https://doi.org/10.3346/jkms.2021.36.e54

11. Yao L, Wang GL, Shen Y, et al. Persistence of antibody and cellular immune responses in COVID-19 patients over nine months after infection. J Infect Dis. 2021:jiab255. https://doi.org/10.1093/infdis/jiab255

12. Gaebler C, Wang Z, Lorenzi JCC, et al. Evolution of antibody immunity to SARS-CoV-2. Nature. 2021;591:639-644. https://doi.org/10.1038/s41586-021-03207-w

13. Xiang T, Liang B, Fang Y, et al. Declining levels of neutralizing antibodies against SARS-CoV-2 in convalescent COVID-19 patients one year post symptom onset. Front Immunol. 2021 Jun 16;12:708523. https://doi.org/10.3389/fimmu.2021.708523

14. Pr vost J, Gasser R, Beaudoin-Bussi res G, et al. Crosssectional evaluation of humoral responses against SARS-CoV-2 spike. Cell Rep Med. 2020 Oct 20;1(7):100126. https://doi.org/10.1016/j.xcrm.2020.100126

15. Wang Z, Muecksch F, Schaefer-Babajew D, et al. Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection. Nature. 2021 Jul;595(7867):426-431. https://doi.org/10.1038/s41586-021-03696-9

16. Dan JM, Mateus J, Kato Y, et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science. 2021;371:eabf4063. https://doi.org/10.1126/science.abf4063

17. Zhou D, Dejnirattisai W, Supasa P, et al. Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccineinduced sera. Cell. 2021;S0092–8674:00226–9. https://doi.org/10.1016/j.cell.2021.02.037

18. Quast I, Tarlinton D. B cell memory: understanding COVID-19. Immunity. 2021;54:205–10. https://doi.org/10.1016/j.immuni.2021.01.014

19. Terpos E, Stellas D, Rosati M, et al. SARS-CoV-2 antibody kinetics eight months from COVID-19 onset: Persistence of spike antibodies but loss of neutralizing antibodies in 24% of convalescent plasma donors. Eur J Intern Med. 2021 Jul;89:87-96. https://doi.org/10.1016/j.ejim.2021.05.010

20. Guthmiller JJ, Stovicek O, Wang J, et al. SARS-CoV-2 Infection severity is linked to superior humoral immunity against the spike. mBio. 2021 Jan;12(1):e02940-20. https://dx.doi.org/10.1128%2FmBio.02940-20

21. Legros V, Denolly S, Vogrig M, et al. A longitudinal study of SARS-CoV-2-infected patients reveals a high correlation between neutralizing antibodies and COVID-19 severity. Cell Mol Immunol. 2021 Feb;18(2):318-327. https://doi.org/10.1038/s41423-020-00588-2

22. Atyeo C, Fischinger S, Zohar T, et al. Distinct early serological signatures track with SARS-CoV-2 survival. Immunity. 2020 Sep;53:524–532.e4. https://dx.doi.org/10.1016%2Fj.immuni.2020.07.020

23. Guthmiller JJ, Stovicek O, Wang J, et al. SARS-CoV-2 infection severity is linked to superior humoral immunity against the spike. mBio. 2021 Jan-Feb;12(1):e02940-20. https://dx.doi.org/10.1128%2FmBio.02940-20

24. Robbiani DF, Gaebler C, Muecksch F, et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature. 2020 Jun;584:437–442. https://dx.doi.org/10.1038%2Fs41586-020-2456-9

25. Hoffmann M, Kleine-Weber H, Krüger N, et al. The novel coronavirus 2019 (2019-nCoV) uses the SARScoronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. bioRxiv. 2020. https://doi.org/10.1101/2020.01.31.929042

26. Ortega, N., Ribes, M., Vidal, M. et al. Seven-month kinetics of SARS-CoV-2 antibodies and role of pre-existing antibodies to human coronaviruses. Nat Commun 2021;12: 4740. https://doi.org/10.1038/s41467-021-24979-9

27. Guthmiller JJ, Stovicek O, Wang J, et al. SARS-CoV-2 infection severity is linked to superior humoral immunity against the spike. mBio. 2021 Jan;12(1): e02940-20. https://doi.org/10.1128/mBio.02940-20


Review

For citations:


Kolosova E.A., Shaprova O.N., Nikulina Yu.A., Shanshin D.V., Nesmeyanova V.S., Merkuleva Yu.A., Belenkaya S.V., Isaeva A.A., Shcherbakov D.N., Elchaninova S.A., Nikonorova M.A. Antibodies to the receptor-binding domain of the SARS-Cov-2 spike protein: association with age, pneumonia, duration of the period after COVID-19. Journal Infectology. 2022;14(1):69-77. (In Russ.) https://doi.org/10.22625/2072-6732-2022-14-1-69-77

Views: 609


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-6732 (Print)